: $Id: geneval_cvode.inc,v 1.1.1.1 2005/12/15 15:16:39 hines Exp $ TITLE Kevins Cvode modified Generalized Hodgkin-Huxley eqn Channel Model COMMENT Each channel has activation and inactivation particles as in the original Hodgkin Huxley formulation. The activation particle mm and inactivation particle hh go from on to off states according to kinetic variables alpha and beta which are voltage dependent. Allows exponential, sigmoid and linoid forms (flags 0,1,2) See functions alpha() and beta() for details of parameterization ENDCOMMENT INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)} NEURON { RANGE gmax, g, i GLOBAL erev, Inf, Tau, vrest } : end NEURON CONSTANT { FARADAY = 96489.0 : Faraday's constant R= 8.31441 : Gas constant } : end CONSTANT UNITS { (mA) = (milliamp) (mV) = (millivolt) (umho) = (micromho) } : end UNITS COMMENT ** Parameter values should come from files specific to particular channels PARAMETER { erev = 0 (mV) gmax = 0 (mho/cm^2) maflag = 0 malphaA = 0 malphaB = 0 malphaV0 = 0 mbflag = 0 mbetaA = 0 mbetaB = 0 mbetaV0 = 0 exptemp = 0 mq10 = 3 mexp = 0 haflag = 0 halphaA = 0 halphaB = 0 halphaV0 = 0 hbflag = 0 hbetaA = 0 hbetaB = 0 hbetaV0 = 0 hq10 = 3 hexp = 0 } : end PARAMETER ENDCOMMENT PARAMETER { cao (mM) cai (mM) celsius (degC) dt (ms) v (mV) } ASSIGNED { i (mA/cm^2) g (mho/cm^2) Inf[2] : 0 = m and 1 = h Tau[2] : 0 = m and 1 = h } : end ASSIGNED STATE { m h } INITIAL { mh(v) m = Inf[0] h = Inf[1] } BREAKPOINT { LOCAL hexp_val, index, mexp_val, mexp2 SOLVE states METHOD cnexp hexp_val = 1 mexp_val = 1 : Determining h's exponent value if (hexp > 0) { FROM index=1 TO hexp { hexp_val = h * hexp_val } } : Determining m's exponent value if (mexp > 0) { FROM index = 1 TO mexp { mexp_val = m * mexp_val } } else if (mexp<0) { mexp2=-mexp FROM index = 1 TO mexp2 { mexp_val = Inf[0] * mexp_val } } : mexp hexp : Note that mexp_val is now = m and hexp_val is now = h g = gmax * mexp_val * hexp_val iassign() } : end BREAKPOINT : ASSIGNMENT PROCEDURES : Must be given by a user routines in parameters.multi : E.G.: : PROCEDURE iassign () { i = g*(v-erev) ina=i } : PROCEDURE iassign () { i = g*ghkca(v) ica=i } :------------------------------------------------------------------- DERIVATIVE states { mh(v) m' = (-m + Inf[0]) / Tau[0] h' = (-h + Inf[1]) / Tau[1] } :------------------------------------------------------------------- : NOTE : 0 = m and 1 = h PROCEDURE mh (v) { LOCAL a, b, j, qq10[2] qq10[0] = mq10^((celsius-exptemp)/10.) qq10[1] = hq10^((celsius-exptemp)/10.) : Calculater Inf and Tau values for h and m FROM j = 0 TO 1 { a = alpha (v, j) b = beta (v, j) if (j==1 && hexp==0) { Tau[j] = 1. Inf[j] = 1. } else { Inf[j] = a / (a + b) Tau[j] = 1. / (a + b) / qq10[j] } } } : end PROCEDURE mh (v) :------------------------------------------------------------------- FUNCTION alpha(v,j) { LOCAL flag, A, B, V0 if (j==1 && hexp==0) { alpha = 0 } else { if (j == 1) { A = halphaA B = halphaB V0 = halphaV0+vrest flag = haflag } else { A = malphaA B = malphaB V0 = malphaV0+vrest flag = maflag } if (flag == 1) { : EXPONENTIAL alpha = A*exp((v-V0)/B) } else if (flag == 2) { : SIGMOID alpha = A/(exp((v-V0)/B)+1) } else if (flag == 3) { : LINOID if(v == V0) { alpha = A*B } else { alpha = A*(v-V0)/(exp((v-V0)/B)-1) } } } } : end FUNCTION alpha (v,j) :------------------------------------------------------------------- FUNCTION beta (v,j) { LOCAL flag, A, B, V0 if (j==1 && hexp==0) { beta = 1 } else { if (j == 1) { A = hbetaA B = hbetaB V0 = hbetaV0+vrest flag = hbflag } else { A = mbetaA B = mbetaB V0 = mbetaV0+vrest flag = mbflag } if (flag == 1) { : EXPONENTIAL beta = A*exp((v-V0)/B) } else if (flag == 2) { : SIGMOID beta = A/(exp((v-V0)/B)+1) } else if (flag == 3) { : LINOID if(v == V0) { beta = A*B } else { beta = A*(v-V0)/(exp((v-V0)/B)-1) } } } } : end FUNCTION beta (v,j) :------------------------------------------------------------------- FUNCTION FRT(temperature) { FRT = FARADAY * 0.001 / R / (temperature + 273.15) } : end FUNCTION FRT (temperature) :------------------------------------------------------------------- FUNCTION ghkca (v) { : Goldman-Hodgkin-Katz eqn LOCAL nu, efun nu = v*2*FRT(celsius) if(fabs(nu) < 1.e-6) { efun = 1.- nu/2. } else { efun = nu/(exp(nu)-1.) } ghkca = -FARADAY*2.e-3*efun*(cao - cai*exp(nu)) } : end FUNCTION ghkca()