TITLE Borg-Graham type generic K-A channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
ek (mV)
celsius (degC)
gkabar=.01 (mho/cm2)
vhalfn=-33.6 (mV)
vhalfl=-83 (mV)
a0l=0.08 (/ms)
a0n=0.02 (/ms)
zetan=-3 (1)
zetal=4 (1)
gmn=0.6 (1)
gml=1 (1)
}
NEURON {
SUFFIX borgka
USEION k READ ek WRITE ik
RANGE gkabar,gka, ik
GLOBAL ninf,linf,taul,taun
}
STATE {
n
l
}
INITIAL {
rates(v)
n=ninf
l=linf
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
gka
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gkabar*n*l
ik = gka*(v-ek)
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,q10
q10=3^((celsius-30)/10)
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(q10*a0n*(1+a))
a = alpl(v)
linf = 1/(1+ a)
taul = betl(v)/(q10*a0l*(1 + a))
}