TITLE Motor Axon Node channels
: 2/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX axnode
NONSPECIFIC_CURRENT ina
NONSPECIFIC_CURRENT inap
NONSPECIFIC_CURRENT ik
NONSPECIFIC_CURRENT il
RANGE gnapbar, gnabar, gkbar, gl, ena, ek, el
RANGE mp_inf, m_inf, h_inf, s_inf
RANGE tau_mp, tau_m, tau_h, tau_s
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gnapbar = 0.01 (mho/cm2)
gnabar = 3.0 (mho/cm2)
gkbar = 0.08 (mho/cm2)
gl = 0.007 (mho/cm2)
ena = 50.0 (mV)
ek = -90.0 (mV)
el = -90.0 (mV)
celsius (degC)
dt (ms)
v (mV)
vtraub=-80
ampA = 0.01
ampB = 27
ampC = 10.2
bmpA = 0.00025
bmpB = 34
bmpC = 10
amA = 1.86
amB = 21.4
amC = 10.3
bmA = 0.086
bmB = 25.7
bmC = 9.16
ahA = 0.062
ahB = 114.0
ahC = 11.0
bhA = 2.3
bhB = 31.8
bhC = 13.4
asA = 0.3
asB = -27
asC = -5
bsA = 0.03
bsB = 10
bsC = -1
}
STATE {
mp m h s
}
ASSIGNED {
inap (mA/cm2)
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
mp_inf
m_inf
h_inf
s_inf
tau_mp
tau_m
tau_h
tau_s
q10_1
q10_2
q10_3
}
BREAKPOINT {
SOLVE states METHOD cnexp
inap = gnapbar * mp*mp*mp * (v - ena)
ina = gnabar * m*m*m*h * (v - ena)
ik = gkbar * s * (v - ek)
il = gl * (v - el)
}
DERIVATIVE states { : exact Hodgkin-Huxley equations
evaluate_fct(v)
mp'= (mp_inf - mp) / tau_mp
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
s' = (s_inf - s) / tau_s
}
UNITSOFF
INITIAL {
:
: Q10 adjustment
:
q10_1 = 2.2 ^ ((celsius-20)/ 10 )
q10_2 = 2.9 ^ ((celsius-20)/ 10 )
q10_3 = 3.0 ^ ((celsius-36)/ 10 )
evaluate_fct(v)
mp = mp_inf
m = m_inf
h = h_inf
s = s_inf
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2
a = q10_1*vtrap1(v)
b = q10_1*vtrap2(v)
tau_mp = 1 / (a + b)
mp_inf = a / (a + b)
a = q10_1*vtrap6(v)
b = q10_1*vtrap7(v)
tau_m = 1 / (a + b)
m_inf = a / (a + b)
a = q10_2*vtrap8(v)
b = q10_2*bhA / (1 + Exp(-(v+bhB)/bhC))
tau_h = 1 / (a + b)
h_inf = a / (a + b)
v2 = v - vtraub : convert to traub convention
a = q10_3*asA / (Exp((v2+asB)/asC) + 1)
b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)
tau_s = 1 / (a + b)
s_inf = a / (a + b)
}
FUNCTION vtrap(x) {
if (x < -50) {
vtrap = 0
}else{
vtrap = bsA / (Exp((x+bsB)/bsC) + 1)
}
}
FUNCTION vtrap1(x) {
if (fabs((x+ampB)/ampC) < 1e-6) {
vtrap1 = ampA*ampC
}else{
vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))
}
}
FUNCTION vtrap2(x) {
if (fabs((x+bmpB)/bmpC) < 1e-6) {
vtrap2 = -bmpA*bmpC
}else{
vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))
}
}
FUNCTION vtrap6(x) {
if (fabs((x+amB)/amC) < 1e-6) {
vtrap6 = amA*amC
}else{
vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))
}
}
FUNCTION vtrap7(x) {
if (fabs((x+bmB)/bmC) < 1e-6) {
vtrap7 = -bmA*bmC
}else{
vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))
}
}
FUNCTION vtrap8(x) {
if (fabs((x+ahB)/ahC) < 1e-6) {
vtrap8 = -ahA*ahC
}else{
vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC))
}
}
FUNCTION Exp(x) {
if (x < -100) {
Exp = 0
}else{
Exp = exp(x)
}
}
UNITSON