// $Id: network.hoc,v 1.126 2010/12/29 03:14:37 cliffk Exp $
print "Loading network.hoc..."
//* Numbers and connectivity params
{declare("colW",1,"colH",1,"torus",1)}
{declare("numcols",colW*colH)}
{declare("dbgcols",0)} // whether to debug columns by making them have the same wiring and inputs
{declare("colr",2)} // maximal trans-column projection distance; 0 within col; 1 next col etc
{declare("colnq","o[5]","lcol",new List())}
{sprint(tstr,"o[%d]",numcols) declare("col",tstr)}
{sprint(tstr,"o[%d][%d]",colH,colW) declare("gcol",tstr)} // 2D column grid
double div[CTYPi][CTYPi][colr+1]//div[i][j]==# of outputs from type i->j
double wmat[CTYPi][CTYPi][STYPi][colr+1] // wmat[i][j][k]==weight from type i->j for synapse k
double delm[CTYPi][CTYPi]//avg. delay from type i->j
double deld[CTYPi][CTYPi]//delay variance from type i->j
double conv[CTYPi][CTYPi][colr+1]
dosetpmat=name_declared("pmat")==0
{sprint(tstr,"d[%d][%d][%d]",CTYPi,CTYPi,colr+1) declare("pmat",tstr)}
double prumat[CTYPi][CTYPi] //pruning matrix:prumat[i][j] specifies ratio (0-1) of synapses to prune
double sprmat[CTYPi][CTYPi] //sprouting matrix:sprmat[i][j] specifies ratio (0-1) to sprout i->j pathway with
double synloc[CTYPi][CTYPi]//location of synapses
{declare("EEGain",4*15/11,"EIGain",15,"IEGain",4*15/11,"IIGain",4*15/11)}
{declare("NMAMR",0.1,"EENMGain",1,"EIGainInterC",0.125,"EEGainInterC",0.325*0.5)}
//* prdiv() - print div
proc prdiv () { local ii,jj
for ii=0,CTYPi-1 for jj=0,CTYPi-1 if(div[ii][jj][0]) {
printf("div[%s][%s][0]=%g\n",CTYP.o(ii).s,CTYP.o(jj).s,div[ii][jj][0])
}
}
// %con (con/pre) = %div (div/post)
DEAD_DIV_INTF6=0
{declare("jcn",1)}
{declare("disinhib",0)} //iff==1 , turn off inhibition, by setting wmat[I%d][...]==0 in inhiboff()
{declare("scale",1)}//16//8//4
{declare("pmatscale",1/scale)} // scale for pmat - originally 1/scale - allows keeping it fixed while changing # of cells in network
batch_flag=declare("dstr",datestr,"setdviPT",NORM)
{declare("params","not batch","ofile",output_file)}
{declare("dvseed",534023)} // seed for wiring
dosetcpercol=name_declared("cpercol")==0 // whether to set values in cpercol or use user-supplied values
{sprint(tstr,"d[%d]",CTYPi) declare("cpercol",tstr)} // cells of a specific type per column
{declare("vcpercol",new Vector(CTYPi))}
{declare("E5BNumF",1,"E5RNumF",1)} // factors for # of E5 cells
{declare("newkmjnums",0)} // use #s based on KMJ #s in /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V
//* setcpercol - set # of cells per column
proc setcpercol () { local i // (/u/samn/vcsim/notebook.dol_1:24562)(notebook.dol_1:24492)
if(dosetcpercol) { // if user didn't supply values (default), set # of cells of a type per column
if(newkmjnums) {
// based on KMJ #s in /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V
cpercol[E2] = 169 * scale
cpercol[I2] = 48 * scale
cpercol[I2L] = 8 * scale
cpercol[E4] = 83 * scale
cpercol[I4] = 24 * scale
cpercol[I4L] = 4 * scale
cpercol[E5R] = 93 * scale
cpercol[E5B] = 32 * scale
cpercol[I5] = 36 * scale
cpercol[I5L] = 6 * scale
cpercol[E6] = 218 * scale
cpercol[I6] = 62 * scale
cpercol[I6L] = 11 * scale
} else {
cpercol[E2] = 150 * scale
cpercol[E4] = 30 * scale
cpercol[E5B] = int(17 * scale * E5BNumF)
cpercol[E5R] = int(65 * scale * E5RNumF)
cpercol[E6] = 60 * scale
cpercol[I2L] = 13 * scale
cpercol[I2] = 25 * scale
cpercol[I4L] = 14 * scale
cpercol[I4] = 20 * scale
cpercol[I5L] = 13 * scale
cpercol[I5] = 25 * scale
cpercol[I6L] = 13 * scale
cpercol[I6] = 25 * scale
}
}
{vcpercol.resize(CTYPi) vcpercol.fill(0)} // store the values in a vector
for i=0,CTYPi-1 vcpercol.x(i)=cpercol[i]
}
//* setpmat()
proc setpmat () { local pre,po
if(!dosetpmat) return // if pmat setup by user (in notebook), then don't reset its values
for ii=0,CTYPi-1 for jj=0,CTYPi-1 for kk=0,1 pmat[ii][jj][kk]=0
pmat[E2][E2][0]=0.187
// pmat[E2][E2][1]=0.14 // turned off 9/23/10
pmat[E2][E4][0]=0.024
pmat[E2][E5B][0]=0.024
pmat[E2][E5R][0]=0.057
pmat[E2][E6][0]=0
pmat[E2][I2L][0]=0.51
pmat[E2][I2][0]=0.43
pmat[E2][I2][1]=0.14
pmat[E4][E2][0]=0.145
pmat[E4][E4][0]=0.243
pmat[E4][E5B][0]=0.122
pmat[E4][E5R][0]=0.116
pmat[E4][E6][0]=0.032
pmat[E4][I4L][0]=0.51
pmat[E4][I4][0]=0.43
pmat[E4][I4][1]=0.14
pmat[E5B][E2][0]=0.018
pmat[E5B][E2][1]=0.25
pmat[E5B][E2][2]=0.1
pmat[E5B][E4][0]=0.007
pmat[E5B][E5B][0]=0.07
pmat[E5B][E5B][1]=0.25
pmat[E5B][E5B][2]=0.1
pmat[E5B][E5R][0]=0.017
pmat[E5B][E5R][1]=0.25
pmat[E5B][E5R][2]=0.1
pmat[E5B][E6][0]=0.07
pmat[E5B][I2L][1]=0.14
pmat[E5B][I2L][2]=0.07
pmat[E5B][I5L][0]=0.51
pmat[E5B][I5L][1]=0.14
pmat[E5B][I5L][2]=0.07
pmat[E5B][I5][0]=0.43
pmat[E5B][I5][1]=0.14
pmat[E5B][I5][2]=0.07
pmat[E5R][E2][0]=0.022
pmat[E5R][E4][0]=0.007
pmat[E5R][E5B][0]=0.08
pmat[E5R][E5B][1]=0.25
pmat[E5R][E5R][0]=0.191
pmat[E5R][E5R][1]=0.14
pmat[E5R][E6][0]=0.032
pmat[E5R][I5L][0]=0.51
pmat[E5R][I5][0]=0.43
pmat[E5R][I5][1]=0.14
pmat[E6][E2][0]=0
pmat[E6][E4][0]=0
pmat[E6][E5B][0]=0.028
pmat[E6][E5R][0]=0.006
pmat[E6][E6][0]=0.028
pmat[E6][I6L][0]=0.51
pmat[E6][I6][0]=0.43
pmat[E6][I6][1]=0.14
pmat[I2L][E2][0]=0.35
pmat[I2L][E5B][0]=0.5
pmat[I2L][E5R][0]=0.35
pmat[I2L][E6][0]=0.25
pmat[I2L][I2L][0]=0.09
pmat[I2L][I2][0]=0.53
pmat[I2L][I5][0]=0.53
pmat[I2L][I6][0]=0.53
pmat[I2][E2][0]=0.44
pmat[I2][I2L][0]=0.34
pmat[I2][I2][0]=0.62
pmat[I4L][E4][0]=0.35
pmat[I4L][I4L][0]=0.09
pmat[I4L][I4][0]=0.53
pmat[I4][E4][0]=0.44
pmat[I4][I4L][0]=0.34
pmat[I4][I4][0]=0.62
pmat[I5L][E2][0]=0.35
pmat[I5L][E5B][0]=0.35
pmat[I5L][E5R][0]=0.35
pmat[I5L][E6][0]=0.25
pmat[I5L][I2][0]=0.53
pmat[I5L][I5L][0]=0.09
pmat[I5L][I5][0]=0.53
pmat[I5L][I6][0]=0.53
pmat[I5][E5B][0]=0.44
pmat[I5][E5R][0]=0.44
pmat[I5][I5L][0]=0.34
pmat[I5][I5][0]=0.62
pmat[I6L][E2][0]=0.35
pmat[I6L][E5B][0]=0.25
pmat[I6L][E5R][0]=0.25
pmat[I6L][E6][0]=0.35
pmat[I6L][I2][0]=0.53
pmat[I6L][I5][0]=0.53
pmat[I6L][I6L][0]=0.09
pmat[I6L][I6][0]=0.53
pmat[I6][E6][0]=0.44
pmat[I6][I6L][0]=0.34
pmat[I6][I6][0]=0.62
}
//* scalepmat(fctr) - multiply values in pmat by fctr
proc scalepmat () { local fctr,from,to,cl
fctr=$1
for from=0,CTYPi-1 for to=0,CTYPi-1 for cl=0,1 pmat[from][to][cl] *= fctr
}
//* pmat2nq - return an NQS with info in pmat
obfunc pmat2nq () { local i,j,k localobj nqpmat
nqpmat=new NQS("froms","tos","from","to","cold","pij")
{nqpmat.strdec("froms") nqpmat.strdec("tos")}
for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr if(pmat[i][j][k]) {
nqpmat.append(CTYP.o(i).s,CTYP.o(j).s,i,j,k,pmat[i][j][k])
}
return nqpmat
}
//* nq2pmat - load NQS ($o1) into pmat
proc nq2pmat () { local i,j,k localobj nq,vf,vto,vc,vpij
{nq=$o1 nq.tog("DB") vf=nq.getcol("from") vto=nq.getcol("to") vc=nq.getcol("cold") vpij=nq.getcol("pij")}
for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr pmat[i][j][k]=0
for i=0,vf.size-1 pmat[vf.x(i)][vto.x(i)][vc.x(i)]=vpij.x(i)
print "loaded " , nq , " into pmat"
}
//* synapse locations DEND SOMA AXON
proc setsynloc () { local from,to
for from=0,CTYPi-1 for to=0,CTYPi-1 {
if(ice(from)) {
if(IsLTS(from)) {
synloc[from][to]=DEND // distal [GA2] - from LTS
} else {
synloc[from][to]=SOMA // proximal [GA] - from FS
}
} else {
synloc[from][to]=DEND // E always distal. use AM2,NM2
}
}
}
//* setdelmats -- setup delm,deld
proc setdelmats () { local from,to,ii,jj
for from=0,CTYPi-1 for to=0,CTYPi-1 {
if(synloc[from][to]==DEND) {
delm[from][to]=4
deld[from][to]=1
} else {
delm[from][to]=2.0
deld[from][to]=0.2
}
}
// snum=0
// for ii=0,CTYPi-1 for jj=0,CTYPi-1 snum+=int(pmat[ii][jj][0]*numc[ii]*numc[jj]+1)
}
//* weight params
//** delay all 2+/-0.02 within column for now
proc setwmat () { local from,to,sy,gn,c
for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 for c=0,colr wmat[from][to][sy][c]=0
wmat[E2][E2][AM2][0]=0.78
wmat[E2][E2][AM2][1]=0.47 * EEGainInterC
wmat[E2][E4][AM2][0]=0.36
wmat[E2][E5B][AM2][0]=0.36
wmat[E2][E5R][AM2][0]=0.93
wmat[E2][E6][AM2][0]=0
wmat[E2][I2L][AM2][0]=0.23
wmat[E2][I2][AM2][0] = 0.23
wmat[E2][I2][AM2][1] = 1.5 * EIGainInterC
wmat[E4][E2][AM2][0]=0.58
wmat[E4][E4][AM2][0]=0.95
wmat[E4][E5B][AM2][0]=1.01
wmat[E4][E5R][AM2][0]=0.54
wmat[E4][E6][AM2][0]=2.27
wmat[E4][I4L][AM2][0]=0.23
wmat[E4][I4][AM2][0] = 0.23
wmat[E4][I4][AM2][1] = 1.5 * EIGainInterC
wmat[E5B][E2][AM2][0]=0.26
wmat[E5B][E2][AM2][1]=0.47 * EEGainInterC
wmat[E5B][E2][AM2][2]=0.47 * EEGainInterC
wmat[E5B][E4][AM2][0]=0.17
wmat[E5B][E5B][AM2][0]=0.71
wmat[E5B][E5B][AM2][1]=0.47 * EEGainInterC
wmat[E5B][E5B][AM2][2]=0.47 * EEGainInterC
wmat[E5B][E5R][AM2][0]=0.24
wmat[E5B][E5R][AM2][1]=0.47 * EEGainInterC
wmat[E5B][E5R][AM2][2]=0.47 * EEGainInterC
wmat[E5B][E6][AM2][0]=0.49
wmat[E5B][I2L][AM2][1]=1.5 * EIGainInterC
wmat[E5B][I2L][AM2][2]=1.5 * EIGainInterC
wmat[E5B][I5L][AM2][0]=0.23
wmat[E5B][I5L][AM2][1]=1.5 * EIGainInterC
wmat[E5B][I5L][AM2][2]=1.5 * EIGainInterC
wmat[E5B][I5][AM2][0]=0.23
wmat[E5B][I5][AM2][1]=1.5 * EIGainInterC
wmat[E5B][I5][AM2][2]=1.5 * EIGainInterC
wmat[E5R][E2][AM2][0]=0.67
wmat[E5R][E4][AM2][0]=0.48
wmat[E5R][E5B][AM2][0]=0.88
wmat[E5R][E5B][AM2][1]=0.47 * EEGainInterC
wmat[E5R][E5R][AM2][0]=0.66
wmat[E5R][E5R][AM2][1]=0.47 * EEGainInterC
wmat[E5R][E6][AM2][0]=0.28
wmat[E5R][I5L][AM2][0]=0.23
wmat[E5R][I5][AM2][0]=0.23
wmat[E5R][I5][AM2][1]=1.5 * EIGainInterC
wmat[E6][E2][AM2][0]=0
wmat[E6][E4][AM2][0]=0
wmat[E6][E5B][AM2][0]=0.53
wmat[E6][E5R][AM2][0]=0.08
wmat[E6][E6][AM2][0]=0.53
wmat[E6][I6L][AM2][0]=0.23
wmat[E6][I6][AM2][0]=0.23
wmat[E6][I6][AM2][1]=1.5 * EIGainInterC
wmat[I2L][E2][GA2][0]=0.83
wmat[I2L][E5B][GA2][0]=0.83
wmat[I2L][E5R][GA2][0]=0.83
wmat[I2L][E6][GA2][0]=0.83
wmat[I2L][I2L][GA2][0]=1.5
wmat[I2L][I2][GA2][0]=1.5
wmat[I2L][I5][GA2][0]=0.83
wmat[I2L][I6][GA2][0]=0.83
wmat[I2][E2][GA][0]=1.5
wmat[I2][I2L][GA][0]=1.5
wmat[I2][I2][GA][0]=1.5
wmat[I4L][E4][GA2][0]=0.83
wmat[I4L][I4L][GA2][0]=1.5
wmat[I4L][I4][GA2][0]=1.5
wmat[I4][E4][GA][0]=1.5
wmat[I4][I4L][GA][0]=1.5
wmat[I4][I4][GA][0]=1.5
wmat[I5L][E2][GA2][0]=0.83
wmat[I5L][E5B][GA2][0]=0.83
wmat[I5L][E5R][GA2][0]=0.83
wmat[I5L][E6][GA2][0]=0.83
wmat[I5L][I2][GA2][0]=0.83
wmat[I5L][I5L][GA2][0]=1.5
wmat[I5L][I5][GA2][0]=1.5
wmat[I5L][I6][GA2][0]=0.83
wmat[I5][E5B][GA][0]=1.5
wmat[I5][E5R][GA][0]=1.5
wmat[I5][I5L][GA][0]=1.5
wmat[I5][I5][GA][0]=1.5
wmat[I6L][E2][GA2][0]=0.83
wmat[I6L][E5B][GA2][0]=0.83
wmat[I6L][E5R][GA2][0]=0.83
wmat[I6L][E6][GA2][0]=0.83
wmat[I6L][I2][GA2][0]=0.83
wmat[I6L][I5][GA2][0]=0.83
wmat[I6L][I6L][GA2][0]=1.5
wmat[I6L][I6][GA2][0]=1.5
wmat[I6][E6][GA][0]=1.5
wmat[I6][I6L][GA][0]=1.5
wmat[I6][I6][GA][0]=1.5
//set NMDA weights
for from=0,CTYPi-1 for to=0,CTYPi-1 for c=0,colr wmat[from][to][NM2][c]=NMAMR*wmat[from][to][AM2][c]
//gain control
for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=AM,GA2 for c=0,colr if(wmat[from][to][sy][c] > 0) {
if(ice(from)) {
if(ice(to)) {
gn = IIGain
} else {
gn = IEGain
}
if(IsLTS(from) && !IsLTS(to)) gn *= 0.5
} else {
if(ice(to)) {
gn = EIGain
if(IsLTS(to)) gn *= 0.5
} else {
gn = EEGain
if(sy==NM || sy==NM2) gn *= EENMGain // E->E NMDA gain
}
}
wmat[from][to][sy][c] *= gn
}
}
// %con (con/pre) = %div (div/post)
//* prune using values in prumat
proc pruc () { local i,j
for i=0,CTYPi-1 for j=0,CTYPi-1{
if(div[i][j][0] && numc[i] && numc[j] && prumat[i][j]){
printf("Warning: pruning random %.2f%% of %s->%s syns\n",prumat[i][j]*100,CTYP.o(i).s,CTYP.o(j).s)
for ixt(i) XO.prune(prumat[i][j],j)
}
}
}
//* get sprouting value assuming 0% sprouting == 50% pruning
func getspr () { local pr
pr = $1
return ((0.5-pr)/.5)*100
}
//* turn off pruning
proc pruoff () { local i,j
for i=0,CTYPi-1 for j=0,CTYPi-1 prumat[i][j]=0
for i=0,allcells-1 INTF6[i].prune(0)
}
//* set all entries in pruning matrix to $1
proc setpru () { local from,to,val
val=$1
pruoff() // first turn off pruning
for from=0,CTYPi-1 for to=0,CTYPi-1 prumat[from][to]=val
}
//* print prumat
proc prumatpr () { local i,j
for i=0,CTYPi-1 { for j=0,CTYPi-1{
printf("%.2f ",prumat[i][j])
}
printf("\n")
}
}
//* clear sprmat entries to 0
proc clrsprmat () { local i,j
for i=0,CTYPi for j=0,CTYPi sprmat[i][j]=0
}
//* unkill/prune all cells
proc unkp () {
for i=0,allcells-1 {
ce.o(i).flag("dead",0)
ce.o(i).prune(0)
}
}
//* kill cells who's ids are in $o1
proc dokill () { local id
for vtr(&id,$o1) ce.o(id).flag("dead",1)
}
//* getkillids - gets ids of cells to kill in $o1 but excludes cells that are stim'ed
//$1=cell type to kill,$2=prct of cells to kill,$o3=vq stim nqs,$4=out vector of kill ids,$5=rnd seed
func getkillids () { local killcnt,i,j,ct,prct localobj vq,vkid,rd
ct=$1 prct=$2 vq=$o3 vkid=$o4 killcnt=int(prct*numc[ct]) vkid.resize(0) j=0 i=ix[ct]
rd=new Random() rd.ACG($5)
while(j<killcnt){
i=rd.discunif(ix[ct],ixe[ct])
if(!vq.v[0].contains(i)){
j+=1
vkid.append(i)
}
i+=1
}
return killcnt
}
//* read .net file
strdef netfile
{sp = new NQS() cp = new NQS()}
//* CREATE CELLS
// %con (con/pre) = %div (div/post)
n=ty=id=0
//* sprcells() sprout cells in specific pathways using sprmat, $1=seed for rand generator
//max div is still 0.75*poty
func sprcells () { local id,a,prty,poty,sz,ls,mx,i localobj vid,vnewid,vnewdel,rd,vd,vtmp
ls=$1 a=allocvecs(vid,vnewid,vnewdel,vd,vtmp) rd=new Random() rd.ACG(ls)
for prty=0,CTYPi-1 for poty=0,CTYPi-1 if(sprmat[prty][poty]) for id=ix[prty],ixe[prty] {
ce.o(id).getdvi(vid) ce.o(id).getdvi(0.2,vd)
sz=div[prty][poty][0]*sprmat[prty][poty] mx=0.75*numc[poty]
if(vd.x(poty)>=mx)continue//already @ max size
while(sz+vd.x(poty)>mx) sz-=1
vrsz(sz*4,vtmp,vnewid) rd.discunif(ix[poty],ixe[poty]) vtmp.setrand(rd)
vtmp.uniq(vnewid) vtmp.resize(0)
for i=0,vnewid.size-1 if(!vid.contains(vnewid.x(i))) vtmp.append(vnewid.x(i))
vtmp.resize(sz)
if(vtmp.size) {
vnewdel.resize(vtmp.size)
rd.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty])
vnewdel.setrand(rd)
ce.o(id).setdvi(vtmp,vnewdel,2)
}
}
dealloc(a)
return 1
}
//** gethublims(col,hubtype,hubfactor,numhubs,mode)
// get a matrix of size CTYPi X CTYPi, specifying div with mat.x(hubtype,othertype)
// and conv with mat.x(othertype,hubtype)
// hubtype = type of hub. hubfactor = desired ratio of hub div/conv vs non-hub div/conv
// numhubs = # of hubs. col = COLUMN for which to set hubs.
// mode == 0 <-- hub div(conv) is set to hubfactor * original div(conv)
// mode == 1 <-- hub div(conv) is set so that final hub div = hubfactor * final non_hub div (same for conv)
// formula is based on: m / ((N-H*m) / (C-H)) = F , and then solving for m
// m = div for the hubs, F = desired ratio of final hub div to final non-hub div
// N = # of synapses (links), C = total # of postsynaptic cells (including hubs) , H = # of hubs
// similarly done for conv , but replace N with appropriate values
// (/u/samn/intfcol/notebook.dol_1:21933)
obfunc gethublims () { local ct,mode,from,to,lim,nc,nhubs,fctr localobj col,mat
{col=$o1 ct=$2 fctr=$3 nhubs=$4 mode=$5 mat=new Matrix(CTYPi,CTYPi)}
for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to]) {
{nc=col.numc[to] if(ct==to)nc-=1} // deduct for self-link
if(mode==0) {
lim = int( 0.5 + col.div[ct][to]*fctr )
} else {
lim = int( 0.5 + col.div[ct][to]*col.numc[ct]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
}
mat.x(ct,to) = MINxy(lim, nc) // at most div to all postsynaptic cells
}
for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct]) {
{nc=col.numc[from] if(ct==from)nc-=1} // deduct for self-link
if(mode==0) {
lim = int( 0.5 + col.conv[from][ct]*fctr )
} else {
lim = int( 0.5 + col.div[from][ct]*col.numc[from]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
}
mat.x(from,ct) = MAXxy(MINxy(lim, nc),1) // at most conv from all presynaptic cells, but at least 1
}
return mat
}
//** addhubs(column,cell-type,numhubs,scaling factor,skipI[,seed,allowz,hubmode,verbose])
// add hubs to the network by stealing wires from other neurons
// $o1 == column
// $2 == cell type of hub
// $3 == number of hubs to add
// $4 == scaling factor (should be > 1.0) for conv,div of hub
// $5 == skip div/conv of I cells
// $6 == seed - optional
// $7 == allowz - whether to allow pulling all links from/to another cell
// $8 == hubmode - which mode to use for gethublims (see above)
// $9 == verbose - optional
// function returns a Vector containing the ids of the cells selected as hubs (within column ids)
obfunc addhubs () { local a,ct,fctr,nhubs,idx,jdx,lseed,hubid,szorig,cursz,preid,poid,lim,skipI,to,from,vrb,changed,allowz,hmode\
localobj col,ce,vin,vout,nq,vd,vc,vdd,vdt,vddt,vpicked,vhubid,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz,mhlim
col=$o1 ct=$2 nhubs=$3 fctr=$4 skipI=$5
if(numarg()>5) lseed=$6 else lseed=1234
if(numarg()>6) allowz=$7 else allowz=1
if(numarg()>7) hmode=$8 else hmode=0
if(numarg()>8) vrb=$9 else vrb=0
{ce=col.ce hashseed_stats(lseed,lseed,lseed)}
a=allocvecs(vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz)
vrsz(col.allcells,vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vdsz,vcsz,vtmp)
mhlim=gethublims(col,ct,fctr,nhubs,hmode)
//vin,vout = input/output markers. vd,vc = div/conv.
//vdd div/conv delays, vdt div/conv temp. vddt=div/conv delay temp
//vpicked=which cells already picked as hubs
vhubid=new Vector()
{vhubid.indgen(col.ix[ct],col.ixe[ct],1) vhubid.shuffle() vhubid.resize(nhubs)}
if(vrb) vlk(vhubid)
for idx=0,vhubid.size-1 vpicked.x(vhubid.x(idx))=1
for idx=0,vhubid.size-1 { hubid=vhubid.x(idx)
if(vrb) printf("hub%d id = %d\n",idx+1,hubid)
{ce.o(hubid).getdvi(vd,vdd,vw1,vw2,vprob,vsyn) ce.o(hubid).getconv(vc)}//IDs of post/presynaptic cells
{ce.o(hubid).getconv(1.2,vcsz) vdsz.resize(CTYPi) vdsz.fill(0)}//counts of post/pre types
for jdx=0,vd.size-1 vdsz.x(ce.o(vd.x(jdx)).type)+=1
{vout.fill(0) vin.fill(0)} //init as 0
for jdx=0,vd.size-1 vout.x(vd.x(jdx))=1 //mark current postsynaptic cells
for jdx=0,vc.size-1 vin.x(vc.x(jdx))=1 //mark current presynaptic cells
for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to] && (!skipI || !ice(to))) {
cursz=szorig=vdsz.x(to) // update divergence
if(vrb) print "\torig div -> " , CTYP.o(to).s, " = " , szorig
{lim=mhlim.x(ct,to) changed=1}
while(cursz<lim && changed==1) { changed=0
for(preid=col.ix[ct];preid<=col.ixe[ct] && cursz<lim;preid+=1) {// pick same presynaptic type
if(vpicked.x(preid)) continue //dont take from other hubs
ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt)
vtmp.fill(0)
for jdx=0,vdt.size-1 vtmp.x(ce.o(vdt.x(jdx)).type)+=1
if(!allowz && vtmp.x(to)<=1)continue//dont want to turn div of another cell to 0
for jdx=0,vdt.size-1 { poid=vdt.x(jdx) // go thru postsynaptic cells looking for target type
if(ce.o(poid).type==to && poid!=hubid && vout.x(poid)==0) { cursz+=1
{vd.append(poid) vdd.append(vddt.x(jdx)) vsyn.append(vsynt.x(jdx))}
{vdt.remove(jdx) vddt.remove(jdx) vsynt.remove(jdx)}
ce.o(preid).setdvi(vdt,vddt,vsynt) // update presynaptic cell
vout.x(poid)=changed=1 // this cell synapses on poid
break
}
}
}
}
if(vrb) print "\tnew div -> " , CTYP.o(to).s, " = " , cursz
}
ce.o(hubid).setdvi(vd,vdd,vsyn) // update hub dvi
for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct] && (!skipI || !ice(from))) {
cursz=szorig=vcsz.x(from) // update convergence
{lim=mhlim.x(from,ct) changed=1}
if(vrb) print "\torig conv <- ", CTYP.o(from).s, " = " , szorig
while(cursz<lim && changed==1) { changed=0
for(preid=col.ix[from];preid<=col.ixe[from]&&cursz<lim;preid+=1) {
if(preid==hubid || vin.x(preid)) continue // don't make self or double-connects
ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt)
for jdx=0,vdt.size-1{
poid = vdt.x(jdx)
if(vpicked.x(poid)) continue // don't take wires from other hubs
if(ce.o(poid).type==ct){ ce.o(poid).getconv(1.2,vtmp)
if(allowz || vtmp.x(from)>1) { // make sure not to remove all inputs of a type to a cell
vdt.x( jdx ) = hubid // reassign input to hub
ce.o(preid).setdvi(vdt,vddt,vsynt) // reset presynaptic cell's div
vin.x( preid ) = changed = 1 // mark input
cursz += 1
break
}
}
}
}
}
if(vrb) print "\tnew conv <- " , CTYP.o(from).s, " = " , cursz
}
}
{dealloc(a) return vhubid}
}
//* mkcolnqs - make an nqs with current pmat,wmat,delm,deld info for use by a COLUMN for wiring
// "dist" represents distance between columns: dist==0 for intra-COLUMN setup, dist>0 for INTER-COLUMN setup
proc mkcolnqs () { local from,to,sy,idx,d localobj froms,tos,sys
if(numarg()>0)idx=$1 else idx=0
{nqsdel(colnq[idx]) colnq[idx]=new NQS("froms","tos","sys","from","to","sy","w","pij","delm","deld","loc","dist")}
colnq[idx].strdec("froms","tos","sys")
for from=0,CTYPi-1 { froms=CTYP.o(from)
for to=0,CTYPi-1 { tos=CTYP.o(to)
for d=0,colr if(pmat[from][to][d]>0) for sy=0,STYPi-1 if(wmat[from][to][sy][d]>0) { sys=STYP.o(sy)
colnq[idx].append(froms.s,tos.s,sys.s,from,to,sy,wmat[from][to][sy][d],pmat[from][to][d],delm[from][to],deld[from][to],synloc[from][to],d)
}
}
}
}
//* mkcols - make the COLUMNs
proc mkcols () { local id,x,y,seed
id=0
for y=0,colH-1 for x=0,colW-1 {
if(dbgcols)seed=dvseed else seed=(id+1)*dvseed
lcol.append(gcol[y][x]=new COLUMN(id,vcpercol,colnq,seed,x,y,setdviPT))
col[id]=gcol[y][x]
col[id].verbose=verbose_INTF6
id+=1
}
}
//* wirecols - setup inter-COLUMN connectivity with NetCon
proc wirecols () { local x1,y1,x2,y2,dx,dy,maxd,d localobj fromc,toc
if(numarg()>0) d=$1 else d=colr
if(torus) { // wraparound
//alternate coordinates: ( -colW+x , -colH+y )
//alternate system: -5 -4 -3 -2 -1
//original system: 0 1 2 3 4
//layed out as a line: -5 -4 -3 -2 -1 0 1 2 3 4
//only need to compare in normal system, and 1 alternate coordinate vs original (and vice versa)
for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
if(y1==y2 && x1==x2) continue // skip self-self
dx=MINxy(abs(x1-x2), MINxy(abs((-colW+x1)-x2), abs(x1-(-colW+x2))) )
dy=MINxy(abs(y1-y2), MINxy(abs((-colH+y1)-y2), abs(y1-(-colH+y2))) )
if((maxd=MAXxy(dx,dy)) > d) continue // skip too far
gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
}
} else { // no wrap-around
for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
if(y1==y2 && x1==x2) continue // skip self-self
if((maxd=MAXxy(abs(x1-x2),abs(y1-y2))) > d) continue // skip too far
gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
}
}
}
//* intercoloff - turn off all weights between COLUMNs
proc intercoloff () { local i localobj xo
for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) {
for i=0,6 xo.weight(i)=0
}
}
//* function calls to setup network
//** # of cells per column
setcpercol() //new numbers (10aug30)
//** setup pmat
if(name_declared("nqpmat")==2) { // read pmat from NQS if available, else set to default
if(nqpmat!=nil) nq2pmat(nqpmat) else setpmat()
} else setpmat()
if(pmatscale!=1) scalepmat(pmatscale)
//** setup synapse locations,delays,wmat
setsynloc()
setdelmats()
setwmat() // new KMJ version
scrsz=50*1e3
double scr[scrsz]
//** make cells, columns, wire columns
mkcolnqs()
mkcols()
wirecols(1)