// $Id: spkts.hoc,v 1.86 2010/07/10 02:32:11 samn Exp $
print "Loading spkts.hoc..."
// ancillary programs for handling vectors
{load_file("decvec.hoc")}
{load_file("decnqs.hoc")}
//* transfer a file into a list of strings
// usage 'f2slist(list,file)'
proc f2slist() { local i
$o1.remove_all
if (! tmpfile.ropen($s2)) { print "Can't open ",$s2
return }
while (tmpfile.gets(temp_string_)>0) {
sfunc.head(temp_string_,"\n",temp_string_) // chop
tmpobj = new String(temp_string_)
$o1.append(tmpobj)
}
}
//* spkts(attrnum[,flag,min,max]) graph spikes from the vectors
thresh = -20 // threshold for deciding which are spikes
burstlen = 1.4 // duration of spike or burst, don't accept another till after this time
proc spkts_call() {}// callback function stub
proc spkts () { local cnt, attrnum, ii, pstep, jj, num, time0, flag, min, max, tst
revec(vec,vec1) // store times and indices respectively
if (numarg()==0) { print "spkts(attrnum[,flag,min,max])\n\tflag 0: graph, flag 1: save vec1,vec to veclist, flag 2: save inds (vec1) and times (vec)" // infomercial
return }
attrnum=$1
panobj = GRV[attrnum]
if (attrnum==0) { cnt=printlist.count() } else { cnt = panobj.llist.count() }
pstep = panobj.printStep
if (numarg()>1) { flag = $2 } else { flag = 0 }
if (numarg()>2) { min = $3 } else { min = 0 }
if (numarg()>3) { max = $4 } else { max = cnt-1 }
if (flag==0){
newPlot(0,1,0,1)
panobj.glist.append(graphItem)
}
for ii=min,max {
if (attrnum==0) {
vrtmp.copy(printlist.object(ii).vec)
if (panobj.printStep==-2) tvec = printlist.object(ii).tvec
if (panobj.printStep==-1) tvec = panobj.tvec
} else {
panobj.rv_readvec(ii,vrtmp) // pick up vector from file
if (panobj.printStep<0) tvec = panobj.tvec
}
if (panobj.printStep>=0) { // make a tvec
if (!isobj(tvec,"Vector")) { print "ERR0 spkts(): tvec not a vector" return }
tvec.resize(vrtmp.size)
tvec.indgen(pstep)
}
spkts1(tvec,vrtmp,vec,vec1,ii)
if (panobj.printStep<0) { // a tvec
tst = vec.max
} else {
tst = pstep*vrtmp.size() // calc the tst
}
}
if (flag==1) { savevec(vec1) savevec(vec) }
if (flag<=0) {
vec1.mark(graphItem,vec,"O",panobj.line) // graph all the times
printf("\n")
graphItem.size(0,tst,min,max)
graphItem.xaxis(0)
graphItem.label(0.1,0.9,panobj.filename)
}
}
// spkts1(tvec,vec,timev,indexv,index)
proc spkts1 () { local ind,tm,ix
ind=tm=allocvecs(2) tm+=1
spkts_call() // place to reset thresh or do other manipulations
mso[tm].resize($o2.size)
mso[tm].xing($o2,$o1,thresh) // times
if (numarg()==5) {
mso[ind].resize(mso[tm].size) // scratch vector stores index
mso[ind].fill($5)
$o3.append(mso[tm]) // add the times for this to end of vec
$o4.append(mso[ind]) // add same index for each spk to end of vec1
} else {
vlk(mso[tm])
}
dealloc(ind)
}
//* parse_spkts()
// pull the vec and vec1 files from spkts apart and put in alloc'ed vectors
func parse_spkts () { local p,q
p=allocvecs(vec1.max+2) q=p+1
for (ii=0;ii<=vec1.max;ii+=1) {
mso[p].indvwhere(vec1,"==",ii)
mso[q].index(vec,mso[p])
q += 1
}
return p+1
}
proc line_spkts () { local ii,min,max,xmax,skip
skip = $1
if (numarg()==3) { min=$2 max=$3 } else {
min = int(graphItem.size(3)+1) max = int(graphItem.size(4)) }
xmax = graphItem.size(2)
for (ii=min;ii<max;ii=ii+skip) {
graphItem.beginline()
graphItem.line(0,ii)
graphItem.line(xmax,ii)
}
graphItem.xaxis()
}
burst_time=0
burst_maxfreq = 30
calc_ave = 0
//** calcspkts(flag,index)
// run after spkts() so vec contains the times, vec1 contains the
// indices
proc calcspkts () { local ii,jj,flag,index,p1,p2,mn,mx
p1 = allocvecs(2,1000) p2 = p1+1
if (numarg()==0) {
print "To be run after spkts(). \
Assumes times in vec, indices in vec1. \
calcspkts(flag,min,max)\nflags:\t1\tspk times\n\t2\tspk freq \
\t3\tburst times\n\t4\tburst freq\nset calc_ave to get averages for freqs"
return
}
// vec contains the times, vec1 contains the indices
flag = $1
mn = $2
if (numarg()==3) { mx=$3 } else { mx=mn }
for index=mn,mx {
mso[p2].resize(0)
mso[p1].indvwhere(vec1,"==",index)
mso[p1].index(vec,mso[p1])
if (flag==1) {
printf("SPKS for #%d: ",index)
for jj=0,mso[p1].size()-1 {printf("%g ",mso[p1].x[jj])}
printf("\n")
} else if (flag==2) {
printf("FREQ for #%d: ",index)
for jj=0,mso[p1].size()-2 {
pushvec(mso[p2],1000./(mso[p1].x[jj+1]-mso[p1].x[jj])) }
if (calc_ave) { print mso[p2].mean } else { vlk(mso[p2]) }
} else if (flag==3) {
printf("BTIMES for #%d: ",index)
burst_time = mso[p1].x[0]
for jj=1,mso[p1].size()-1 {
if (1000./(mso[p1].x[jj]-burst_time) < burst_maxfreq) {
printf("%g ",burst_time)
burst_time = mso[p1].x[jj]
}
}
printf("\n")
} else if (flag==4) {
printf("BFREQ for #%d: ",index)
burst_time = mso[p1].x[0]
for jj=1,mso[p1].size()-1 {
// should keep track of spike times in case of very long bursts
if (1000./(mso[p1].x[jj]-burst_time) < burst_maxfreq) {
pushvec(mso[p2],1000./(mso[p1].x[jj]-burst_time))
burst_time = mso[p1].x[jj]
}
}
if (calc_ave) { print mso[p2].mean } else { mso[p2].printf }
}
}
dealloc(p1)
}
func rvwheres () { local ii
if ($1!=0) {
for ii=0,panobjl.object($1).llist.count()-1 {
if (sfunc.substr(panobjl.object($1).llist.object(ii).name,$s2)==0) {
return ii }
}
errorMsg("String not found in rvwheres.")
}
return -2
}
supind = 0
//* spkhist assume spk times in vec
// allows superimposing of graphs
// spkhist(bin_size)
proc spkhist () { local ii,jj,min,max,diff
if (numarg()==0) { print "spkhist(bin_size)" return }
if (numarg()==3) { min=$2 max=$3 } else { min=0 max=tstop }
diff = max-min
vrtmp.hist(vec,min,max,$1)
vec0.resize(4*diff/$1)
vec1.resize(4*diff/$1)
vec0.fill(0) vec1.fill(0)
for (ii=min;ii<int(diff/$1);ii=ii+1) {
jj=ii*4
vec0.x[jj+0] = ii*$1
vec0.x[jj+1] = ii*$1
vec0.x[jj+2] = (ii+1)*$1
vec0.x[jj+3] = (ii+1)*$1
vec1.x[jj+0] = 0
vec1.x[jj+1] = vrtmp.x[ii]
vec1.x[jj+2] = vrtmp.x[ii]
vec1.x[jj+3] = 0
}
if (panobj.super==0) {
newPlot(min,max,0,vrtmp.max)
panobj.glist.append(graphItem)
} else { graphItem = panobjl.object(panobj.remote).glist.object(supind)
supind = supind+1 }
vec1.line(graphItem,vec0)
sprint(temp_string_,"Hist: %s %d",panobj.filename,$1)
graphItem.label(0.1,0.9,temp_string_)
}
//** truncvec (vec1,margin)
// truncate a thresholded time vector so that only one time is given for each spike
// vec1 has thresholded times, margin is duration of a spike
proc truncvec () { local a,ii,num,marg,time0 localobj vs
marg = $2
a=allocvecs(vs)
num=0 time0=-1e3
vs.resize($o1.size())
vs.fill(-2)
for ii=0,$o1.size()-1 {
if ($o1.x[ii] > time0+marg) {
vs.x[ii] = $o1.x[ii]
time0 = $o1.x[ii]
}
}
$o1.where(vs,">",-1)
dealloc(a)
}
//** redundkeep(vec) keeps sequential redundent entries
// destructive
proc redundkeep () { local x,ii
$o1.sort
x = $o1.x[0]
for ii=1,$o1.size-1 {
if ($o1.x[ii]!=x) { $o1.x[ii-1]=-1e20 x=$o1.x[ii] }
}
$o1.where($o1,">",-1e20)
}
//** after running spkall can see which cells are responsible for spks
// assumes spk times in vec, spk identities in vec1
// uses ind and vec0
proc whichspked () { local ii
ind.indvwhere(vec,"()",$1,$2) // a range
vec0 = vec1.ind(ind)
ind = vec.ind(ind)
for ii=0,ind.size()-1 { printf("%d %g\n",vec0.x[ii],ind.x[ii]) }
}
// firebtwn(ind,time,min,max) list of cells that fire between times min and max
proc firebtwn () { local ii,p1,p2,p3
p1 = allocvecs(3) p2=p1+1 p3=p2+1
mso[p3].indvwhere($o2,"[]",$3,$4)
mso[p1].index($o1,mso[p3]) // indices
mso[p2].index($o2,mso[p3]) // times
printf("%d hits\n",mso[p3].size)
for vtr2(&x,&y,mso[p1],mso[p2]) {
printf("%4d::%6.2f ",x,y)
if ((ii+1)%5==0) { print "" }
}
print ""
dealloc(p1)
// dealloc(p2) // to save the indexes
}
// elimind(ind,time,min,max) take out cells with nums between min,max
// destructive
proc elimind () { local ii,p1
p1 = allocvecs(1)
mso[p1].indvwhere($o1,"[]",$3,$4)
vecelim($o1,mso[p1]) vecelim($o2,mso[p1])
dealloc(p1)
}
// index/time graph
// tigr(ind,vec,size,marker)
proc tigr () { local sz
if (numarg()==0) { print "tigr(Yvec,Xvec,marker size,marker type)"
print "Marker types: \"o\",t,s,O,T,S,+ (circ, tri, square; CAP is filled)"
return }
if (numarg()>2) { sz=$3 } else { sz=6 }
if (numarg()>3) { temp_string_=$s4 } else { temp_string_="O" }
nvplt($o2)
graphItem.size($o2.min,$o2.max,$o1.min,$o1.max)
$o1.mark(graphItem,$o2,temp_string_,sz,panobj.curcol)
}
//* p2nqs(#,panobj,nqs) -- copy an entry into an nqs
proc p2nqs () { local x,a localobj v1,q,p
x=$1 p=$o2 q=$o3
q.resize(0)
a=allocvecs(v1)
p.rv_readvec(x,v1)
q.resize("time",p.tvec,"ind",v1)
dealloc(a)
}
//** spkboth() determines how many cells spike in 2 time periods
proc spkboth () { local a,t1,t2,t3,t4,s1,s2,s3 localobj v1,v2,v3,o
o=$o1 t1=$2 t2=$3 t3=$4 t4=$5
printf("MAY NEED DEBUGGING SINCE NQS.getcol() CHANGED\n")
a=allocvecs(v1,v2,v3,1e4)
o.verbose=0
o.select("time","()",t1,t2) v1.redundout(o.getcol("ind"))
o.select("time","()",t3,t4) v2.redundout(o.getcol("ind"))
v3.insct(v1,v2)
s1=v1.size s2=v2.size s3=v3.size
printf("P1: %d, P2: %d, Both: %d (%d%%, %d%%)\n",s1,s2,s3,s3/s1*100,s3/s2*100)
o.verbose=1
dealloc(a)
}
//returns NQS containing ID,Type,SpikeT
//doesn't check if cell is dead or alive, assumes input is valid
//$o1 = spike vitem
//or
//$o1 = spike vitem, $2 == skipI
//or
//$o1 = time vec , $o2 = id vec
obfunc SpikeNQS(){ local idx,skipI localobj vec,tvec,nq
if(ce==nil) return nil
skipI=0
if(numarg()==1){
vec = $o1.vec tvec = $o1.tvec
} else if(numarg()==2){
if(argtype(1)==1 && argtype(2)==1){
tvec=$o1 vec=$o2
} else {
vec = $o1.vec tvec=$o1.tvec skipI=$2
}
} else {
printf("SpikeNQS ERRA: invalid args!\n")
return nil
}
nq = new NQS("ID","Type","SpikeT")
if(skipI){
for idx=0,2 { nq.v[idx].resize(vec.size) nq.v[idx].resize(0) }
for idx=0,vec.size-1 {
if(ice(ce.o(vec.x(idx)).type)) continue
nq.append(vec.x(idx),ce.o(vec.x(idx)).type,tvec.x(idx))
}
} else {
nq.v[0].copy(vec)
nq.v[2].copy(tvec)
nq.v[1].resize(vec.size)
for idx=0,vec.size-1 nq.v[1].x(idx)=ce.o(vec.x(idx)).type
}
return nq
}
//returns NQS with refractory % of cell types vs time -- assumes all cells of a type
//have the same refractory period
//$o1 = nqs from SpikeNQS, $2 = dt, optional, $3=skip inhib cells, optional
obfunc refracNQ () { local ct,tt,dt,s,skipI,dotypes localobj snq,nr,vid
snq=$o1 nr=new NQS("Type","t","r") ct=0
if(numarg()>1)dt=$2 else dt=0.25
if(numarg()>2)skipI=$3 else skipI=1
if(numarg()>3)dotypes=$4 else dotypes=0
for(tt=0;tt<=tmax_INTF;tt+=dt){
for ctt(&ct) if(skipI && !ice(ct)) {
if(snq.select("Type",ct,"SpikeT","[]",tt-ce.o(ix[ct]).refrac,tt)){
vid=snq.getcol("ID")//after select, so will use output
s=vid.uniq
} else {
s=0
}
nr.append(ct,tt,s/numc[ct])
}
}
return nr
}
//returns nqs with % of cells of each type that have activated by time=t
obfunc PActNQS () { local tinc,winsz,idx,ct,tt,tm,spks,cells,spksE,spksI,nE,nI,cellsE,cellsI\
localobj nqt,va,vspk,snq
snq=$o1
//time start,end,cell type,activated:0-1,spikes,cells:abs,cells:0-1
nqt=new NQS("ts","te","ct","act","spks","cells","cellsn")
if(numarg()>1)tinc=$2 else tinc=0.25
if(numarg()>2)winsz=$3 else winsz=0.5
va=new Vector(CTYPi+1)//keep track of % of cells of a type that have spiked
va.fill(0)
{vspk=new Vector(allcells) vspk.fill(0)}//keep track of which cells have spiked
snq.verbose=0
snq.tog("DB") tm=snq.getcol("SpikeT").max
for(tt=0;tt<tm;tt+=tinc) {
spksE=spksI=nE=nI=cellsE=cellsI=0
for ctt(&ct) {
if((spks=snq.select("Type",ct,"SpikeT","[]",tt,tt+winsz))) {
for vtr(&idx,snq.getcol("ID"))vspk.x(idx)=1
if(ice(ct)) spksI+=spks else spksE+=spks
}
va.x(ct) = vspk.sum(ix[ct],ixe[ct]) / numc[ct]
if(spks>0) cells=snq.out.getcol("ID").uniq else cells=0
if(ice(ct)) {
nI+=va.x(ct)*numc[ct]
cellsI+=cells
} else {
nE+=va.x(ct)*numc[ct]
cellsE+=cells
}
nqt.append(tt,tt+winsz,ct,va.x(ct),spks,cells,cells/numc[ct])
}
nqt.append(tt,tt+winsz,-1,nE/ecells,spksE,cellsE,cellsE/ecells)
nqt.append(tt,tt+winsz,-2,nI/icells,spksI,cellsI,cellsI/icells)
}
snq.verbose=1
return nqt
}
//$o1=nqs from PActNQS , gets peaks & intervals of cell activity levels,
//ct == -1 for E cells, ct == -2 for I cells
obfunc GetPeakNQ () { local idx,ct localobj vi,nqp,vc,nqpo,nqin
nqin=$o1 nqin.tog("DB") vc=new Vector(nqin.size(-1)) nqin.getcol("ct").uniq(vc)
nqin.verbose=0
nqpo=new NQS("ct","ts","x","y","dx","dy")
for vtr(&ct,vc) {
nqin.select("ct",ct) vi=nqin.getcol("spks")
nqp=new NQS("ct","ts","x","y")
for idx=1,vi.size-2 {
if(vi.x(idx)>vi.x(idx-1) && vi.x(idx)>vi.x(idx+1)) {
nqp.append(ct,nqin.getcol("ts").x(idx),idx,vi.x(idx))
}
}
nqp.resize("dx") nqp.resize("dy")
nqp.v[nqp.m-2]=Deriv(nqp.getcol("x"))
nqp.v[nqp.m-1]=Deriv(nqp.getcol("y"))
nqpo.append(nqp)
nqsdel(nqp)
}
nqin.verbose=1
return nqpo
}
// returns list containing spike times for each cell
// $o1 == raster vitem
obfunc spikelist () { local idx localobj ls,vec,tvec
vec=$o1.vec tvec=$o1.tvec
ls=new List()
for idx=0,allcells-1 ls.append(new Vector())
for idx=0,vec.size-1 ls.o(vec.x(idx)).append(tvec.x(idx))
return ls
}
// plot a single cell's spike times
// $o1 == snq, $2 == cell id, $3 == color, $4 == size, $5==drawR
proc plotcellst () { local cid,st,clr,a,sz,drawR localobj snq,vt,vx,vy
snq=$o1 cid=$2 clr=$3 sz=$4
if(numarg()>4)drawR=$5 else drawR=0
a=allocvecs(vx,vy)
snq.select("ID",cid)
gvmarkflag=1
vt=snq.out.v[2]//SpikeT
for vtr(&st,vt) vx.append(st) vy.append(cid)
if(drawR) for vtr(&st,vt) drline(st+.05,cid,st+ce.o(cid).refrac,cid,g,1,1)
vy.mark(g,vx,"O",sz,clr,1)
dealloc(a)
}
//draw fancier raster
//$o1=nqs from SpikeNQS, $2==draw refractory periods, $3==skip inhib cells
proc drawrastw () { local idx,skipI,drawR,maxID,a,c,sz,drlt localobj snq,vx,vy,vtype,vc,vtu
a=allocvecs(vx,vy) drlt=drlflush drlflush=0
vc=new Vector(CTYP.count+1) vc.fill(0)
snq=$o1 snq.tog("DB") maxID=snq.v[0].max//max ID
vtype=new Vector() vtype.copy(snq.v[1])//Type
if(numarg()>1)drawR=$2 else drawR=0
if(numarg()>2)skipI=$3 else skipI=0
if(numarg()>3)sz=$4 else sz=2
vtu=new Vector(vtype.size) vtype.uniq(vtu)
c=2
for vtr(&idx,vtu) if(!skipI || !ice(idx)) {
vc.x(idx)=c
c+=1
}
if(skipI){
for idx=0,maxID if(!ice(ce.o(idx).type)) {
plotcellst(snq,idx,vc.x(ce.o(idx).type),sz,drawR)
}
} else {
for idx=0,maxID {
plotcellst(snq,idx,vc.x(ce.o(idx).type),sz,drawR)
}
}
dealloc(a) drlflush=drlt
if(name_declared("rasterlines"))rasterlines()
g.flush
}
// plot inhib cells in rast
// $o1 == snq, $2==color, $3==size
proc plotIrast () { local idx,clr,sz localobj xo,snq
snq=$o1 clr=$2 sz=$3 idx=0
for ltr(xo,ce,&idx) if(ice(xo.type)) plotcellst(snq,idx,clr,sz)
}
//simple coefficient of variation of interspike interval synch measure from tiesinga03.pdf
//$o1 = spike nqs from SpikeNQS()
//$2 = interval time
//$3 = slide time
//$4 = skip inhib cells [optional] default == 1
obfunc CVPNQS(){ local idx,startt,endt,midt,N,intt,slidet,ct,skipI,CVp localobj snq,cvpnq,vs,vi,vu
snq=$o1 intt=$2 slidet=$3 if(numarg()>3)skipI=$4 else skipI=1
vs=new Vector(allcells*2) vi=new Vector(allcells*2)
vs.resize(0) vi.resize(0) snq.verbose=0
cvpnq=new NQS("Type","startt","endt","midt","sync","N","CVp","sync2")
startt=0 endt=intt midt=intt/2
vu=new Vector(allcells)
for(startt=0;startt<=tmax_INTF+1-intt;startt+=slidet){
endt=startt+intt
if(endt>=tmax_INTF) endt=tmax_INTF
midt=(startt+endt)/2
if( (N=snq.select("SpikeT",">=",startt,"SpikeT","<",endt)) > 2 ){
if(N>vu.size)vu.resize(N)
snq.out.getcol("ID").uniq(vu) N=vu.size //# of active cells
vs.copy(snq.out.getcol("SpikeT")) //spike times
vs.sort //sort spike times to make ISI for all active cells
vi.resize(0)
for idx=0,vs.size-2 vi.append(vs.x(idx+1)-vs.x(idx))
CVp=vi.stdev/vi.mean
cvpnq.append(0,startt,endt,midt,(CVp-1.)/sqrt(N),N,CVp,(CVp-1.)/sqrt(vi.size))
} else {
cvpnq.append(0,startt,endt,midt,0,0,0,0)
}
for ctt(&ct) {
if(skipI && ice(ct)) continue
if( (N=snq.select("Type",ct,"SpikeT",">=",startt,"SpikeT","<",endt)) > 2 ){
if(N>vu.size)vu.resize(N)
snq.out.getcol("ID").uniq(vu) N=vu.size //# of active cells
vs.copy(snq.out.getcol("SpikeT")) //spike times
vs.sort //sort spike times to make ISI for all active cells
vi.resize(0)
for idx=0,vs.size-2 vi.append(vs.x(idx+1)-vs.x(idx))
CVp=vi.stdev/vi.mean
cvpnq.append(ct,startt,endt,midt,(CVp-1.)/sqrt(N),N,CVp,(CVp-1.)/sqrt(vi.size))
} else {
cvpnq.append(ct,startt,endt,midt,0,0,0,0)
}
}
}
snq.verbose=1
return cvpnq
}
//return spike frequency NQS
//$o1=spike nqs from SpikeNQS()
//$2=interval [optional]
//$3=just do types with interval [optional]
//$4=skipI [optional] default==1
//$5=stop time [optional]
//$6=start time [optional]
//$7=slide time [optional]
obfunc FreqNQS(){ local idx,startt,endt,intt,ct,dotypes,starttime,stoptime,sp,slidet,skipI\
localobj fnq,snq
snq=$o1 intt=$2
if(numarg()>2) dotypes=$3 else dotypes=0
if(numarg()>3) skipI=$4 else skipI=1
if(numarg()>4) stoptime=$5 else stoptime=tstop
if(numarg()>5) starttime=$6 else starttime=0
if(numarg()>6) slidet=$7 else slidet=intt
if(!dotypes){
fnq=new NQS("ID","Type","Freq","StartT","EndT")
intt=$2 startt=starttime endt=startt+intt
for(;startt<stoptime;startt+=slidet){
endt=startt+intt
//check length of interval, make sure it's within time bounds of run
if(endt >= stoptime) endt = stoptime
if(startt>=endt)endt=startt+1
for idx=0,allcells-1{
if(skipI && ice(ce.o(idx).type))continue
sp=snq.select(-1,"ID",idx,"SpikeT",">=",startt,"SpikeT","<",endt)
fnq.append(idx,ce.o(idx).type,1e3*sp/(endt-startt),startt,endt)
}
}
} else {
fnq=new NQS("Type","Freq","StartT","EndT")
intt=$2 startt=starttime endt=startt+intt
for(;startt<stoptime;startt+=slidet){
endt=startt+intt
//check length of interval, make sure it's within time bounds of run
if(endt >= stoptime) endt = stoptime
if(startt>=endt)endt=startt+1
for ctt(&ct) {
if(skipI && ice(ct))continue
sp=snq.select(-1,"Type",ct,"SpikeT",">=",startt,"SpikeT","<",endt)
fnq.append(ct,1e3*sp/(numc[ct]*(endt-startt)),startt,endt)
}
}
}
return fnq
}
func binfindtidx () { local done,val,idx,m,lo,hi,t localobj vv
vv=$o1 t=$2
lo=0 hi=vv.size-1 m=int(vv.size/2) done=0
while(!done){
if(vv.x(m)>t){
hi=m m=int((hi+lo)/2.0)
} else if(vv.x(m)<t){
lo=m m=int((hi+lo)/2.0)
}
if(hi==m || lo==m) return m
}
}
obfunc estconmat () { local t1,t2,idx,jdx,kdx,del,st1,st2,tdx,df localobj ls,emat,vs1,vs2,vp
ls=$o1 del=$2 emat=new List()
for idx=0,ls.count-1 emat.append(new Vector(ls.count))
estconmat_vc(ls,del,emat)
return emat
}
// geteff -- get efficiency of $1 to $2 connections
// $1 == type 1 (from)
// $2 == type 2 (to)
// $o3 == ls from spikelist
// returns vector with access by index
obfunc geteff () { local idx,jdx,kdx,ldx,ty1,ty2,tot,cnt,tt,del,fctr,cntonce\
localobj vt,vpo,vdel,vm,vt2,vtmp,ls,vid
ty1=$1 ty2=$2 ls=$o3
if(numarg()>3) fctr=$4 else fctr=2
if(numarg()>4) cntonce=$5 else cntonce=0
vpo=new Vector(allcells)
vdel=new Vector(allcells)
vm=new Vector(allcells)
vtmp=new Vector(allcells)
vtmp.resize(0)
for idx=ix[ty1],ixe[ty1]{
if(idx%100==0)printf("%d.",idx)
if(!ls.o(idx).size) continue
vt=ls.o(idx)
ce.o(idx).getdvi(vpo,vdel)
tot=0
for jdx=0,vpo.size-1 if(ce.o(vpo.x(jdx)).type==ty2) tot+=1
if(!tot) continue
vtmp.resize(0)
for jdx=0,vt.size-1 { // go thru spikes
tt=vt.x(jdx)
cnt=0
for kdx=0,vpo.size-1{ // go thru outputs
if(ce.o(vpo.x(kdx)).type!=ty2) continue
del=vdel.x(kdx)
vt2=ls.o(vpo.x(kdx))
for ldx=0,vt2.size-1{ // check spiketimes of each output
if(vt2.x(ldx) >= tt+del && vt2.x(ldx) <= tt+fctr*del){ // within range?
cnt += 1
if(cntonce) break // only count once? then break
}
}
}
vtmp.append(cnt/tot)
}
if(vtmp.size) vm.x(idx)=vtmp.mean
}
printf("\n")
return vm
}
// get efficiency of excitatory connections between populations in a given path
// specified by $o1 , i.e. $o1 = new Vector(layer4,layer2,layer5,layer6,layer4)
// $o2 == ls , from spikelist(...)
// $3 == delay fctr for geteff
// returned as NQS
obfunc getpatheffnq () { local fctr,cntonce localobj vpath,nqp,ve,ls
vpath=$o1
ls=$o2
fctr=$3
if(numarg()>3) nqp=$o4 else nqp=new NQS("ID","from","to","e")
if(numarg()>4) cntonce=$5 else cntonce=0
for idx=0,vpath.size-2 {
printf("eff from %s to %s: ",CTYP.o(vpath.x(idx)).s,CTYP.o(vpath.x(idx+1)).s)
ve=geteff(vpath.x(idx),vpath.x(idx+1),ls,fctr,cntonce)
for jdx=ix[vpath.x(idx)],ixe[vpath.x(idx)]{
nqp.append(jdx,vpath.x(idx),vpath.x(idx+1),ve.x(jdx))
}
}
return nqp
}