: Shunt current, voltage dependent
: Bob Calin-Jageman 9/20/2002
: This model implements a voltage-dependent, non-inactivating shunt current
: as described by
: Getting, 1989 and utilized by Lieb and Frost, 1998.
:
:
: Created by Bob Calin-Jageman
:
: Created 9/20/2002
: Modified 9/20/2002
:
: Mathcheck - 9/31/2002
: Unitscheck - 9/31/2002 (though G not literal mS)
:
: Explanation
: Shunt current is equal to G * m * h * (V-Erev)
: G - weight
: m - activation level
: h - inactivation level - always 1
: v - current membrane potential in mv
: Erev - reversal potential for the current
:
: m, the activation level changes as dm/dt = (m-ss - m) / tau-m
: where m-ss is the steady-state activation determined by
: m-ss = 1/( 1 + e ^((v+b)/c) )
:
:
: References
: Getting, P.A. (1989) "Reconstruction of small neural networks" in
: Methods in Neuronal Modeling: From Synapses to Networks (1st ed), Kock & Segev
: eds, MIT Press.
: Lieb JR & Frost WN (1997) "Realistic Simulation of the Aplysia Siphon
: Withdrawal Reflex Circuit: Roles of Circuit Elements in Producing Motor Output"
: p. 1249 */
:
NEURON {
POINT_PROCESS shunt
NONSPECIFIC_CURRENT i
RANGE G, erev, Bm, Cm, Tm, Bh, Ch, Th, mmax, hmax, vstart
}
UNITS {
(mS) = (microsiemens)
(mV) = (millivolt)
(nA) = (nanoamp)
}
PARAMETER {
G = .28 (microsiemens)
erev = -56.9 (mV)
Bm (1)
Cm (1)
Tm (1)
Bh (1)
Ch (1)
Th (1)
mmax (1)
hmax (1)
vstart (mv)
}
ASSIGNED {
i (nA)
v (mV)
}
STATE { m (1) h (1)}
BREAKPOINT {
mmax = 1/(1+exp((v+Bm)/Cm))
hmax = 1/(1+exp((v+Bh)/Ch))
SOLVE state METHOD cnexp
i = G * m * h * (v - erev)
}
INITIAL {
m = 1/(1+exp((vstart+Bm)/Cm))
h = 1/(1+exp((vstart+Bh)/Ch))
}
DERIVATIVE state {
m' = (mmax - m)/Tm
h' = (hmax - h)/Th
}