#include <stdio.h>
/* #include <stddef.h> */
/* #include <stdlib.h> */
#include <math.h>
#include "nr.h"
void nrerror(char error_text[])
/* Numerical Recipes standard error handler */
{
fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr,"%s\n",error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);
}
double *dvector(long nl, long nh)
/* allocate a double vector with subscript range v[nl..nh] */
{
double *v;
v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double)));
if (!v) nrerror("allocation failure in dvector()");
return v-nl+NR_END;
}
void free_dvector(double *v, long nl, long nh)
/* free a double vector allocated with dvector() */
{
free((FREE_ARG) (v+nl-NR_END));
}
int *ivector(long nl, long nh)
/* allocate an int vector with subscript range v[nl..nh] */
{
int *v;
v=(int *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(int)));
if (!v) nrerror("allocation failure in ivector()");
return v-nl+NR_END;
}
void free_ivector(int *v, long nl, long nh)
/* free an int vector allocated with ivector() */
{
free((FREE_ARG) (v+nl-NR_END));
}
double **dmatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */
{
int i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
double **m;
/* allocate pointers to rows */
m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
if (!m) nrerror("allocation failure 1 in matrix()");
m += NR_END;
m -= nrl;
/* allocate rows and set pointers to them */
m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl] += NR_END;
m[nrl] -= ncl;
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
/* return pointer to array of pointers to rows */
return m;
}
void free_dmatrix(double **m, long nrl, long nrh, long ncl, long nch)
/* free a double matrix allocated by dmatrix() */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));
}
int **imatrix(long nrl, long nrh, long ncl, long nch)
/* allocate an integer matrix with subscript range m[nrl..nrh][ncl..nch] */
{
int i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
int **m;
/* allocate pointers to rows */
m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
if (!m) nrerror("allocation failure 1 in matrix()");
m += NR_END;
m -= nrl;
/* allocate rows and set pointers to them */
m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl] += NR_END;
m[nrl] -= ncl;
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
/* return pointer to array of pointers to rows */
return m;
}
void free_imatrix(int **m, long nrl, long nrh, long ncl, long nch)
/* free an integer matrix allocated by imatrix() */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));
}
char **cmatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a char matrix with subscript range m[nrl..nrh][ncl..nch] */
{
int i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
char **m;
/* allocate pointers to rows */
m=(char **) malloc((size_t)((nrow+NR_END)*sizeof(char*)));
if (!m) nrerror("allocation failure 1 in matrix()");
m += NR_END;
m -= nrl;
/* allocate rows and set pointers to them */
m[nrl]=(char *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(char)));
if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl] += NR_END;
m[nrl] -= ncl;
for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
/* return pointer to array of pointers to rows */
return m;
}
void free_cmatrix(char **m, long nrl, long nrh, long ncl, long nch)
/* free a char matrix allocated by dmatrix() */
{
free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl-NR_END));
}
double ***d3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
/* allocate a double 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] */
{
long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
double ***t;
/* allocate pointers to pointers to rows */
t=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double**)));
if (!t) nrerror("allocation failure 1 in f3tensor()");
t += NR_END;
t -= nrl;
/* allocate pointers to rows and set pointers to them */
t[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double*)));
if (!t[nrl]) nrerror("allocation failure 2 in f3tensor()");
t[nrl] += NR_END;
t[nrl] -= ncl;
/* allocate rows and set pointers to them */
t[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(double)));
if (!t[nrl][ncl]) nrerror("allocation failure 3 in f3tensor()");
t[nrl][ncl] += NR_END;
t[nrl][ncl] -= ndl;
for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
for(i=nrl+1;i<=nrh;i++) {
t[i]=t[i-1]+ncol;
t[i][ncl]=t[i-1][ncl]+ncol*ndep;
for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
}
/* return pointer to array of pointers to rows */
return t;
}
void free_d3tensor(double ***t, long nrl, long nrh, long ncl, long nch,
long ndl, long ndh)
/* free a double f3tensor allocated by f3tensor() */
{
free((FREE_ARG) (t[nrl][ncl]+ndl-NR_END));
free((FREE_ARG) (t[nrl]+ncl-NR_END));
free((FREE_ARG) (t+nrl-NR_END));
}
#define NRANSI
void convlv(double data[], unsigned long n, double respns[], unsigned long m,
int isign, double ans[])
{
unsigned long i,no2;
double dum,mag2,*fft;
fft=dvector(1,n<<1);
for (i=1;i<=(m-1)/2;i++)
respns[n+1-i]=respns[m+1-i];
for (i=(m+3)/2;i<=n-(m-1)/2;i++)
respns[i]=0.0;
twofft(data,respns,fft,ans,n);
no2=n>>1;
for (i=2;i<=n+2;i+=2) {
if (isign == 1) {
ans[i-1]=(fft[i-1]*(dum=ans[i-1])-fft[i]*ans[i])/no2;
ans[i]=(fft[i]*dum+fft[i-1]*ans[i])/no2;
} else if (isign == -1) {
if ((mag2=SQR(ans[i-1])+SQR(ans[i])) == 0.0)
nrerror("Deconvolving at response zero in convlv");
ans[i-1]=(fft[i-1]*(dum=ans[i-1])+fft[i]*ans[i])/mag2/no2;
ans[i]=(fft[i]*dum-fft[i-1]*ans[i])/mag2/no2;
} else nrerror("No meaning for isign in convlv");
}
ans[2]=ans[n+1];
realft(ans,n,-1);
free_dvector(fft,1,n<<1);
}
#undef NRANSI
void correl(double data1[], double data2[], unsigned long n, double ans[])
{
unsigned long no2,i;
double dum,*fft;
fft=dvector(1,n<<1);
twofft(data1,data2,fft,ans,n);
no2=n>>1;
for (i=2;i<=n+2;i+=2) {
ans[i-1]=(fft[i-1]*(dum=ans[i-1])+fft[i]*ans[i])/no2;
ans[i]=(fft[i]*dum-fft[i-1]*ans[i])/no2;
}
ans[2]=ans[n+1];
realft(ans,n,-1);
free_dvector(fft,1,n<<1);
}
void twofft(double data1[], double data2[], double fft1[], double fft2[],
unsigned long n)
{
unsigned long nn3,nn2,jj,j;
double rep,rem,aip,aim;
nn3=1+(nn2=2+n+n);
for (j=1,jj=2;j<=n;j++,jj+=2) {
fft1[jj-1]=data1[j];
fft1[jj]=data2[j];
}
four1(fft1,n,1);
fft2[1]=fft1[2];
fft1[2]=fft2[2]=0.0;
for (j=3;j<=n+1;j+=2) {
rep=0.5*(fft1[j]+fft1[nn2-j]);
rem=0.5*(fft1[j]-fft1[nn2-j]);
aip=0.5*(fft1[j+1]+fft1[nn3-j]);
aim=0.5*(fft1[j+1]-fft1[nn3-j]);
fft1[j]=rep;
fft1[j+1]=aim;
fft1[nn2-j]=rep;
fft1[nn3-j] = -aim;
fft2[j]=aip;
fft2[j+1] = -rem;
fft2[nn2-j]=aip;
fft2[nn3-j]=rem;
}
}
void realft(double data[], unsigned long n, int isign)
{
void four1(double data[], unsigned long nn, int isign);
unsigned long i,i1,i2,i3,i4,np3;
double c1=0.5,c2,h1r,h1i,h2r,h2i;
double wr,wi,wpr,wpi,wtemp,theta;
theta=3.141592653589793/(double) (n>>1);
if (isign == 1) {
c2 = -0.5;
four1(data,n>>1,1);
} else {
c2=0.5;
theta = -theta;
}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
np3=n+3;
for (i=2;i<=(n>>2);i++) {
i4=1+(i3=np3-(i2=1+(i1=i+i-1)));
h1r=c1*(data[i1]+data[i3]);
h1i=c1*(data[i2]-data[i4]);
h2r = -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i1]=h1r+wr*h2r-wi*h2i;
data[i2]=h1i+wr*h2i+wi*h2r;
data[i3]=h1r-wr*h2r+wi*h2i;
data[i4] = -h1i+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
}
if (isign == 1) {
data[1] = (h1r=data[1])+data[2];
data[2] = h1r-data[2];
} else {
data[1]=c1*((h1r=data[1])+data[2]);
data[2]=c1*(h1r-data[2]);
four1(data,n>>1,-1);
}
}
void four1(double data[], unsigned long nn, int isign)
{
unsigned long n,mmax,m,j,istep,i;
double wtemp,wr,wpr,wpi,wi,theta;
double tempr,tempi,temp;
n=nn << 1;
j=1;
for (i=1;i<n;i+=2) {
if (j > i) {
SWAP(data[j],data[i]);
SWAP(data[j+1],data[i+1]);
}
m=n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
mmax=2;
while (n > mmax) {
istep=mmax << 1;
theta=isign*(6.28318530717959/mmax);
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) {
for (i=m;i<=n;i+=istep) {
j=i+mmax;
tempr=wr*data[j]-wi*data[j+1];
tempi=wr*data[j+1]+wi*data[j];
data[j]=data[i]-tempr;
data[j+1]=data[i+1]-tempi;
data[i] += tempr;
data[i+1] += tempi;
}
wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
}
mmax=istep;
}
}
void mrqmin(double x[], double y[], double sig[], int ndata, double a[],
int ia[], int ma, double **covar, double **alpha, double *chisq,
void (*funcs)( double, double[], double *, double[], int), double *alamda)
/* Levenberg-Marquardt method, attempting to reduce the value chi^2 of a fit */
/* between a set of data points x[1..ndata] , y[1..ndat a] with individual */
/* standard deviations sig[1..ndata], and a nonlinear function dependent on */
/* ma coeffcients a[1..ma]. The input array ia[1..ma] indicates by nonzero */
/* entries those components of a that should be fitted for, and by zero */
/* entries those components that should be held fixed at their input values. */
/*The program returns current best-fit values for the parameters a[1..ma] , */
/* and chi^2 = chisq. The arrays covar[1..ma][1. .ma], alpha[1..ma][1..ma] */
/* are used as w rking space during most iterations. Supply a routine */
/* funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its */
/* derivatives dyda[1..ma] with respect to the fitting parameters a at x. */
/* On the first call p rovide an initial guess for the parameters a , and */
/* set alamda<0 fo r initialization (which then sets alamda=.001). If a step */
/* succeeds chisq becomes smaller and alamda decreases by a facto r of 10. */
/* If a step fails alamda grows by a factor of 10. You must call this */
/* routine repeatedly until convergence is achieved. Then, make one final */
/* call with alamda=0, so that covar[1..ma][1..ma] returns the covariance */
/* matrix, and alpha the curvature matrix. (P a rameters held fixed will */
/* return zero covariances.) */
{
int j,k,l;
static int mfit;
static double ochisq,*atry ,*beta ,*da,**oneda;
if (*alamda < 0.0) { /* Initialization. */
atry=dvector(1,ma);
beta=dvector(1,ma);
da=dvector(1,ma);
for (mfit=0,j=1;j<=ma;j++)
if (ia[j]) mfit++;
oneda=dmatrix(1,mfit,1,1);
*alamda=0.001;
mrqcof(x,y ,sig,ndata,a,ia,ma,alpha,beta,chisq,funcs);
ochisq=(*chisq);
for (j=1;j<=ma; j++) atry[j]=a [j] ;
}
/* Alter linearized fitting matrix, by augmenting diagonal elements. */
for (j=1;j<=mfit; j++) {
for (k=1;k<=mfit;k++) covar[j][k]=alpha[j][k];
covar[j][j]=alpha[j][j]*(1.0+(*alamda));
oneda[j][1]=beta[j];
}
gaussj(covar,mfit,oneda,1); /*Matrix solution. */
for (j=1;j<=mfit; j++) da[j]=oneda[j][1] ;
if (*alamda == 0.0) { /* Once converged, evaluate covariance matrix. */
covsrt(covar,ma,ia,mfit);
free_dmatrix(oneda,1,mfit,1,1);
free_dvector(da,1,ma);
free_dvector(beta,1,ma);
free_dvector(atry,1,ma);
return;
}
for (j=0,l=1;l<=ma;l++) /* Did the trial succeed? */
if (ia[l]) atry[l]=a[l]+da[++j];
mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,chisq,funcs);
if (*chisq < ochisq) { /* Success, accept the new solution. */
*alamda *= 0.1;
ochisq=(*chisq);
for (j=1;j<=mfit;j++) {
for (k=1;k<=mfit;k++) alpha[j][k]=covar[j][k] ;
beta[j]=da[j];
}
for (l=1;l<=ma;l++) a[l]=atry[l];
}
else { /* Failure, increase alamda and return. */
*alamda *= 10.0;
*chisq=ochisq;
}
}
void mrqcof(double x[], double y[], double sig[], int ndata, double a[],
int ia[], int ma, double **alpha, double beta[], double *chisq,
void (*funcs)( double, double[], double *, double[], int))
/* Used by mrqmin to evaluate the linearized fitting matrix alpha, and */
/* vector beta as in (15.5.8), and calculate chi^2. */
{
int i,j,k,l,m,mfit=0;
double ymod,wt,sig2i,dy,*dyda;
dyda=dvector(1,ma);
for (j=1;j<=ma;j++)
if (ia[j]) mfit++;
for (j=1;j<=mfit; j++) { /* Initialize (symmetric) alpha, beta. */
for (k=1;k<=j;k++) alpha[j][k]=0.0;
beta[j]=0.0;
}
*chisq=0.0;
for (i=1;i<=ndata ;i++) { /* Summation loop over all data. */
(*funcs)(x[i],a,&ymod,dyda,ma);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=0,l=1;l<=ma;l++) {
if (ia[l]) {
wt=dyda[l]*sig2i;
for (j++,k=0,m=1;m<=l;m++)
if (ia[m]) alpha[j][++k]+= wt*dyda[m];
beta[j]+= dy*wt;
}
}
*chisq += dy*dy*sig2i; /* And find chi^2. */
}
for (j=2;j<=mfit; j++) /* Fill in the symmetric side. */
for (k=1;k<j;k++) alpha[k][j] =alpha[j][k];
free_dvector(dyda,1,ma);
}
void covsrt(double **covar, int ma, int ia[], int mfit)
/* Expand in storage the covariance matrix covar , so as to take into */
/* account parameters that are being held fixed. (For the latter, return */
/* zero covariances.) */
{
int i,j,k;
double temp;
for (i=mfit+1; i<= ma; i++ )
for (j=1;j<=i;j ++) covar[i][j]=covar[j][i]=0.0;
k=mfit;
for (j=ma;j>=1 ;j--) {
if (ia[j]) {
for (i=1;i<=ma ;i++) SWAP(covar[i][k],covar[i][j])
for (i=1;i<=ma ;i++) SWAP(covar[k][i],covar[j][i])
k--;
}
}
}
void gaussj(double **a, int n, double **b, int m)
/* Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) */
/* above. a[1..n][1..n ] is the input matrix. b[1..n][1..m ] is input */
/* containing the m right-hand side vectors. On output, a is replaced by */
/* its matrix inverse, and b is replaced by the corresponding set of */
/* solution vectors. */
{
int *indxc,*indxr,*ipiv;
int i,icol,irow,j,k,l,ll;
double big,dum,pivinv,temp;
/* The integer arrays ipiv, indxr, and indxc are used for bookkeeping */
/* on the pivoting. */
indxc=ivector(1,n);
indxr=ivector(1,n);
ipiv=ivector(1,n);
for (j=1;j<=n; j++) ipiv[j]=0;
/* This is the main lo op over the columns to be reduced. */
for (i=1;i<=n; i++) {
big=0.0;
/* This is the outer loop of the search for a pivot element. */
for (j=1;j<=n;j++)
if (ipiv[j] != 1)
for (k=1;k<=n;k ++) {
if (ipiv[k] == 0) {
if (fabs(a[j][k]) >= big) {
big=fabs(a[j][k]);
irow=j;
icol=k;
}
} else if (ipiv[k] > 1) nrerror(" gaussj : Singular Matrix-1");
}
++(ipiv[icol]);
/* We now have the pivot element, so we interchange rows, if needed, */
/* to put the pivot element on the diagonal. The columns are not */
/* physically interchanged, only relabeled: indxc[i], the column of */
/* the ith pivot element, is the ith column that is reduced, while */
/* indxr[i] is the row in which that pivot element was originally */
/* located. If indxr[i] != indxc[i] there is an implied column */
/* interchange. With this form of bookkeeping, the solution b's will */
/* end up in the correct order, and the inverse matrix will be */
/* scrambled by columns. */
if (irow != icol) {
for (l=1;l<=n;l++) SWAP(a[irow] [l],a [icol][l])
for (l=1;l<=m;l++) SWAP(b[irow] [l],b [icol][l])
}
/* We are now ready to divide the pivot row by the pivot element, */
/* located at irow and icol. */
indxr[i]=irow;
indxc[i]=icol;
if (a[icol][icol] == 0.0) nrerror(" gaussj : Singular Matrix-2");
pivinv=1.0/a[icol][icol];
a[icol][icol] =1.0;
for (l=1;l<=n;l++) a[icol][l] *= pivinv;
for (l=1;l<=m;l++) b[icol][l] *= pivinv;
/* Next, we reduce the rows... */
/*...except for the pivot one, of course. */
for (ll=1;ll<=n;ll++)
if (ll != icol) {
dum=a[ll] [icol];
a[ll][icol]=0.0;
for (l=1;l<=n;l++) a[ll][l] -= a[icol][l]*dum;
for (l=1;l<=m;l++) b[ll][l] -= b[icol][l]*dum;
}
}
/* This is the end of the main loop over columns of the reduction. */
/* It only remains to unscramble the solution in view of the column */
/* interchanges. We do this by interchanging pairs of columns in the */
/* reverse order that the permutation was built up. */
for (l=n;l>=1; l--) {
if (indxr[l] != indxc[l])
for (k=1;k<=n; k++)
SWAP(a[k] [indxr[l]],a [k][indxc[l]]);
}
/* And we are done. */
free_ivector(ipiv ,1,n);
free_ivector(indxr,1,n);
free_ivector(indxc,1,n);
}
void ludcmp(double **a, int n, int *indx, double *d, int *singular)
/* Given a matrix a[1..n][ 1.. n], this routine replaces it by the LU */
/* decomposition of a rowwise permutation of itself. a and n are input. */
/* a is output, a rranged as in equation (2.3.14) above; indx[1..n] is an */
/* output vector that records the row permutation effected by the partial */
/* pivoting; d is output as +-1 depending on whether the number of row */
/* interchanges was even or odd, respectively. */
/* This routine is used in combination with lubksb to solve linear */
/* equations or invert a matrix. */
{
int i,imax,j,k ;
double big,dum,sum ,temp;
double *vv; /* vv stores the implicit scaling of each row. */
vv=dvector(1 ,n) ;
*singular = 1;
*d=1.0; /* No row interchanges yet. */
for (i=1;i<=n; i++) {
/* Loop over ro ws to get the implicit scaling information. */
big=0.0;
for (j=1;j<=n;j ++)
if ((temp=fabs (a[ i] [j] )) > big) big=temp;
if (big == 0.0) /* Modification DG 27.5.2002 */
{
printf("Singular matrix in routine ludcmp\n");
*singular = 0;
return;
}
/* No nonzero largest element. */
vv[i]=1.0/ big ; /* Save the scaling. */
}
for (j=1;j<=n; j++ ) {
/* This is the loop over columns of Crout's method. */
for (i=1;i<j;i++) {
/* This is equation (2.3.12) except for i = j. */
sum=a[i][j] ;
for (k=1;k<i;k ++) sum -= a[i][k]*a[k][j];
a[i][j]=sum ;
}
big=0.0; /* Initialize for the search for largest pivot element. */
for (i=j;i<=n;i ++) {
/* This is i = j of equation (2.3.12) and i = j + 1 ... N of equation */
/* (2.3.13). */
sum=a[i][j] ;
for (k=1;k<j;k ++)
sum -= a[i][k]*a[k][j];
a[i][j]=sum ;
if ( (dum=vv[i]*fabs(sum) ) >= big) {
/* Is the figure of merit for the pivot better than the best so */
/* far? */
big=dum;
imax=i;
}
}
if (j != imax) { /* Do we need to interchange rows? */
for (k=1;k<=n; k++) { /* Yes, do so... */
dum=a[imax][k];
a[imax][k]=a [j][k] ;
a[j][k]=dum;
}
*d = -(*d); /* ...and change the parity of d . */
vv[imax]=vv [j] ; /* Also interchange the scale facto r. */
}
indx[j]=imax;
if (a[j][j] == 0.0) a[j][j]=TINY ;
/* If the pivot element is zero the matrix is singula r (at least to */
/* the precision of the algorithm). For some applications on singular */
/* matrices, it is desirable to substitute TINY for zero. */
if (j != n) { /* Now, finally , divide by the pivot element. */
dum=1.0/(a[j][j]) ;
for (i=j+1;i<= n;i++) a[i][j] *= dum;
}
}
/* Go back for the next column in the reduction. */
free_dvector (vv ,1, n);
}
void lubksb(double **a, int n, int *indx, double b[])
/* Solves the set of n linea r equations A * X = B . Here a[1..n][1 ..n ] */
/* is input, not as the matrix A but rather as its LU decomposition, */
/* determined by the routine ludcmp. indx[1..n] is input as the permutation */
/* vector returned by ludcmp. b[1..n] is input as the right-hand side */
/* vector B, and returns with the solution vector X . a , n , and indx are */
/* not modified by this routine and can be left in place for successive */
/* calls with different right-hand sides b. This routine takes into account */
/* the possibility that b will begin with many zero elements, so it is */
/* efficient for use in matrix inversion. */
{
int i,ii=0,ip,j;
double sum;
for (i=1;i<=n; i++ ) {
/* When ii is set to a positive value, it will become the index of the */
/* first nonvanishing element of b. We now do the forward substitution, */
/* equation (2.3.6). The only new wrinkle is to unscramble the */
/* permutation as we go. */
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii)
for (j=ii;j<=i-1; j++) sum -= a[i][j]*b[j];
else if (sum) ii=i;
/* A nonzero element w as encountered, so from now on we will have to */
/* do the sums in the loop above. */
b[i]=sum;
}
for (i=n;i>=1; i--) {
/* Now we do the backsubstitution, equation (2.3.7). */
sum=b[i];
for (j=i+1;j<=n ;j++) sum -= a[i][j]*b[j];
b[i]=sum/a[i][i];
/* Store a component of the solution vector X . */
} /* All done! */
}
#define FREERETURN {free_dmatrix(fjac,1,n,1,n);free_dvector(fvec,1,n);\
free_dvector(p,1,n);free_ivector(indx,1,n);return;}
void mnewt(int ntrial, double x[], int n, double tolx, double tolf,
int *singular,
void (*usrfun)(double *x, int n, double *fvec, double **fjac, void *ptr),
void *ptr)
/* Given an initial guess x[1..n] for a root in n dimensions, take ntrial */
/* Newton-Raphson steps to improve the root. Stop if the root converges in */
/* either summed absolute variable increments tolx or summed absolute */
/* function values tolf. */
{
int k,i,*indx;
double errx,errf,d,*fvec,**fjac,*p;
indx=ivector(1,n) ;
p=dvector(1, n);
fvec=dvector(1, n);
fjac=dmatrix(1, n, 1 ,n) ;
for (k=1;k<=ntrial;k++) {
usrfun(x, n ,fvec ,fjac, ptr);
/* User function supplies function values at x in fvec and Jacobian */
/* matrix in fjac. */
errf=0.0;
for (i=1;i<=n;i++) errf += fabs(fvec[i]);
/* Check function convergence. */
if (errf <= tolf) FREERETURN
for (i=1;i<=n;i ++) p[i] = -fvec[i];
/* Right-hand side of linear equations. */
ludcmp(fjac,n ,indx ,&d, singular);
/* Solve linea r equations using LU decomp osition. */
lubksb(fjac,n,indx,p);
errx=0.0;
/* Check root convergence. */
for (i=1;i<=n;i ++) { /* Update solution. */
errx += fabs(p[i]);
x[i] += p[i];
}
if (errx <= tolx) FREERETURN
}
FREERETURN
}
void fdjac(int n, double x[], double fvec[], double **df,
void (*vecfunc)(int, double [], double [], void *ptr), void *ptr)
/* Computes forward-difference approximation to Jacobian. On input, x[1..n] */
/* is the point at which the Jacobian is to be evaluated, fvec[1..n] is the */
/* vector of function values at the point, and vecfunc(n,x,f) is a */
/* user-supplied routine that returns the vector of functions at x. */
/* On output, df[1..n][ 1.. n] is the Jacobian array. */
{
int i,j;
double h,temp,*f;
f=dvector(1, n);
for (j=1;j<=n; j++ ) {
temp=x[j];
h=EPS*fabs(temp);
if (h==0.0) h=EPS;
x[j]=temp+h; /* Trick to reduce finite precision error. */
h=x[j]-temp;
(*vecfunc) (n,x,f,ptr);
x[j]=temp;
for (i=1;i<=n;i++) df[i][j]=(f[i]-fvec[i])/h;
/* Forward difference formula. */
}
free_dvector(f,1,n);
}
/* Here GOLD is the default ratio by which successive intervals are */
/* magnified; GLIMIT is the maximum magnification allowed for a */
/* parabolic-fit step. */
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
double *fc, double (*func)(double, void *), void *ptr)
/* Given a function func, and given distinct initial points ax and bx, this */
/* routine searches in the downhill direction (defined by the function as */
/* evaluated at the initial points) and returns new points ax, bx, cx that */
/* bracket a minimum of the function. Also returned are the function values */
/* at the three points, fa, fb, and fc. */
{
double ulim,u,r,q,fu,dum;
*fa=(*func)(*ax, ptr);
*fb=(*func)(*bx, ptr);
printf("ax=%lf fa=%lf bx=%lf fb=%lf\n", *ax, *fa, *bx, *fb);
if (*fb > *fa) {
/* Switch roles of a and b so that we can go */
/* downhill in the direction from a to b . */
SHFT(dum, *ax, *bx, dum)
SHFT(dum, *fb, *fa, dum)
}
printf("ax=%lf fa=%lf bx=%lf fb=%lf\n", *ax, *fa, *bx, *fb);
*cx=(*bx)+GOLD*(*bx - *ax); /* First guess for c. */
printf("cx=%lf\n", *cx);
*fc=(*func)(*cx, ptr);
printf("ax=%lf fa=%lf bx=%lf fb=%lf cx=%lf fc=%lf\n", *ax, *fa, *bx, *fb,
*cx, *fc);
while (*fb > *fc) { /* Keep returning here until we bracket. */
r=(*bx - *ax)*( *fb - *fc) ; /* Compute u by parabolic extrapolation from */
q=(*bx - *cx)*( *fb - *fa) ; /* a, b, c . TINY is used to prevent any */
u=(*bx)-((*bx - *cx)*q-(*bx - *ax)*r)/ /* possible division by zero. */
(2.0*SIGN(DMAX(fabs(q-r),TINY),q-r));
ulim=(*bx)+GLIMIT*(*cx - *bx);
/* We won't go farther than this. Test various possibilities: */
if ((*bx-u)*(u - *cx) > 0.0) { /* Parabolic u is between b and c : try it. */
fu=(*func)(u, ptr);
printf("u=%lf fu=%lf\n", u, fu);
if (fu < *fc) { /* Got a minimum between b and c . */
*ax=(*bx);
*bx=u;
*fa=(*fb);
*fb=fu;
return;
}
else if (fu > *fb) { /* Got a minimum between a and u . */
*cx=u;
*fc=fu;
return;
}
u=(*cx)+GOLD*(*cx - *bx); /* Parabolic fit was no use. Use default */
fu=(*func)(u, ptr); /* magnification. */
printf("u=%lf fu=%lf\n", u, fu);
}
else if ((*cx-u)*(u-ulim) > 0.0) { /* Parabolic fit is between c and its */
fu=(*func)(u, ptr); /* allowed limit. */
printf("u=%lf fu=%lf\n", u, fu);
if (fu < *fc) {
SHFT(*bx, *cx ,u, *cx+GOLD*(*cx - *bx))
SHFT(*fb, *fc ,fu ,(*func)(u, ptr))
printf("u=%lf fu=%lf\n", u, fu);
}
} else if ((u-ulim)*( ulim- *cx) >= 0.0) { /* Limit parabolic u to */
u=ulim; /* maximum allowed value. */
fu=(*func)(u, ptr);
printf("u=%lf fu=%lf\n", u, fu);
}
else { /* Reject parabolic u , use default magnification. */
u=(*cx)+GOLD*( *cx - *bx);
fu=(*func)(u, ptr);
printf("u=%lf fu=%lf\n", u, fu);
}
SHFT(*ax, *bx, *cx, u) /* Eliminate oldest point and continue. */
SHFT(*fa,* fb, *fc, fu)
}
}
double golden(double ax, double bx, double cx, double (*f)(double, void *),
double tol, double *xmin, void *ptr)
/* Given a function f, and given a bracketing triplet of abscissas ax, bx, */
/* cx (such that bx is between ax and cx, and f(bx) is less than both f(ax) */
/* and f(cx)), this routine performs a golden section search for the */
/* minimum, isolating it to a fractional precision of about tol. The */
/* abscissa of the minimum is returned as xmin , and the minimum function */
/* value is returned as golden , the returned function value. */
{
double f1,f2,x0,x1,x2,x3;
/* At any given time we will keep track of four points, x0,x1,x2,x3. */
x3=cx;
if (fabs(cx-bx) > fabs(bx-ax)) { /* Make x0 to x1 the smaller segment, */
x1=bx; /* and fill in the new point to be */
x2=bx+Cgolden*(cx-bx); /* tried. */
}
else {
x2=bx;
x1=bx-Cgolden*(bx-ax);
}
/* The initial function evaluations. Note that we never */
/* need to evaluate the function at the original endpoints. */
f1=(*f)(x1, ptr);
f2=(*f)(x2, ptr);
while (fabs(x3-x0) > tol*(fabs(x1)+fabs(x2))) {
if (f2 < f1) { /* One possible outcome, */
SHFT3(x0,x1,x2,Rgolden*x1+Cgolden*x3) /* its housekeeping, */
SHFT2(f1,f2,(*f)(x2, ptr)) /* and a new function evaluation. */
} else { /* The other outcome, */
SHFT3(x3,x2,x1,Rgolden*x2+Cgolden*x0)
SHFT2(f2,f1,(*f)(x1, ptr)) /* and its new function evaluation. */
}
} /* Back to see if we are done. */
if (f1 < f2) { /* We are done. Output the best of the two current values. */
*xmin=x1;
return f1;
} else {
*xmin=x2;
return f2;
}
}
/* Here ITMAX is the maximum allowed number of iterations; CGOLD is the */
/* golden ratio; ZEPS is a small number that protects against trying to */
/* achieve fractional accuracy for a minimum that happens to be exactly zero.*/
double brent(double ax, double bx, double cx, double (*f)(double, void *),
double tol, double *xmin, void *ptr)
/* Given a function f, and given a bracketing triplet of abscissas ax, bx, */
/* cx (such that bx is between ax and cx, and f(bx) is less than both f(ax) */
/* and f(cx)), this routine isolates the minimum to a fractional precision */
/* of about tol using Brent's method. The abscissa of the minimum is */
/* returned as xmin , and the minimum function value is returned as brent , */
/* the returned function value. */
{
int iter;
double a,b,d,etemp=0,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm;
double e=0.0; /* This will be the distance moved on the step before last. */
a=(ax < cx ? ax : cx); /* a and b must be in ascending order, */
b=(ax > cx ? ax : cx); /* but input abscissas need not be. */
x=w=v=bx; /* Initializations... */
fw=fv=fx=(*f)(x, ptr);
for (iter=1; iter<=ITMAX; iter++) { /* Main program loop. */
xm=0.5*(a+b);
tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
if (fabs(x-xm) <= (tol2-0.5*(b-a))) { /* Test for done here. */
*xmin=x;
return fx;
}
if (fabs(e) > tol1) { /* Construct a trial parabolic fit. */
r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw);
p=(x-v)*q-(x-w)*r;
q=2.0*(q-r) ;
if (q > 0.0) p = -p;
q=fabs(q);
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
d=CGOLD*(e=( x >= xm ? a-x : b-x));
/* The above conditions determine the acceptability of the parabolic */
/* fit. Here we take the golden section step into the larger of the */
/* two segments. */
else {
d=p/q; /* Take the parabolic step. */
u=x+d;
if (u-a < tol2 || b-u < tol2)
d=SIGN(tol1 ,xm-x );
}
}
else {
d=CGOLD*(e= (x >= xm ? a-x : b-x));
}
u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
fu=(*f)(u, ptr); /* This is the one function evaluation per iteration. */
if (fu <= fx) { /* Now decide what to do with our function evaluation. */
if (u >= x) a=x; else b=x;
SHFT(v,w,x,u) /*Housekeepingfollows: */
SHFT(fv,fw,fx,fu)
}
else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {
v=w;
w=u;
fv=fw;
fw=fu;
} else if (fu <= fv || v == x || v == w) {
v=u;
fv=fu;
}
} /* Done with housekeeping. Back for another iteration. */
}
nrerror("Too many iterations in brent");
return 0.0;
}
double rtsafe(void (*funcd)(double, double *, double *, void *ptr), double x1,
double x2, double xacc, void *ptr)
{
void nrerror(char error_text[]);
int j;
double df,dx,dxold,f,fh,fl;
double temp,xh,xl,rts;
(*funcd)(x1,&fl,&df, ptr);
(*funcd)(x2,&fh,&df, ptr);
if ((fl > 0.0 && fh > 0.0) || (fl < 0.0 && fh < 0.0))
nrerror("Root must be bracketed in rtsafe");
if (fl == 0.0) return x1;
if (fh == 0.0) return x2;
if (fl < 0.0) {
xl=x1;
xh=x2;
} else {
xh=x1;
xl=x2;
}
rts=0.5*(x1+x2);
dxold=fabs(x2-x1);
dx=dxold;
(*funcd)(rts,&f,&df, ptr);
for (j=1;j<=MAXIT;j++) {
if ((((rts-xh)*df-f)*((rts-xl)*df-f) > 0.0)
|| (fabs(2.0*f) > fabs(dxold*df))) {
dxold=dx;
dx=0.5*(xh-xl);
rts=xl+dx;
if (xl == rts) return rts;
} else {
dxold=dx;
dx=f/df;
temp=rts;
rts -= dx;
if (temp == rts) return rts;
}
if (fabs(dx) < xacc) return rts;
(*funcd)(rts,&f,&df, ptr);
if (f < 0.0)
xl=rts;
else
xh=rts;
}
nrerror("Maximum number of iterations exceeded in rtsafe");
return 0.0;
}
double zbrent(double (*func)(double, void *ptr), double x1, double x2,
double tol, void *ptr)
{
int iter;
double a=x1,b=x2,c=x2,d,e,min1,min2;
double fa=(*func)(a, ptr),fb=(*func)(b, ptr),fc,p,q,r,s,tol1,xm;
if ((fa > 0.0 && fb > 0.0) || (fa < 0.0 && fb < 0.0))
nrerror("Root must be bracketed in zbrent");
fc=fb;
for (iter=1;iter<=ITMAX;iter++) {
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
c=a;
fc=fa;
e=d=b-a;
}
if (fabs(fc) < fabs(fb)) {
a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;
}
tol1=2.0*EPSzbrent*fabs(b)+0.5*tol;
xm=0.5*(c-b);
if (fabs(xm) <= tol1 || fb == 0.0) return b;
if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) {
s=fb/fa;
if (a == c) {
p=2.0*xm*s;
q=1.0-s;
} else {
q=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);
}
if (p > 0.0) q = -q;
p=fabs(p);
min1=3.0*xm*q-fabs(tol1*q);
min2=fabs(e*q);
if (2.0*p < (min1 < min2 ? min1 : min2)) {
e=d;
d=p/q;
} else {
d=xm;
e=d;
}
} else {
d=xm;
e=d;
}
a=b;
fa=fb;
if (fabs(d) > tol1)
b += d;
else
b += SIGN(tol1,xm);
fb=(*func)(b, ptr);
}
nrerror("Maximum number of iterations exceeded in zbrent");
return 0.0;
}
#define RADIX 2.0
void balanc(double **a, int n)
{
int last,j,i;
double s,r,g,f,c,sqrdx;
sqrdx=RADIX*RADIX;
last=0;
while (last == 0) {
last=1;
for (i=1;i<=n;i++) {
r=c=0.0;
for (j=1;j<=n;j++)
if (j != i) {
c += fabs(a[j][i]);
r += fabs(a[i][j]);
}
if (c && r) {
g=r/RADIX;
f=1.0;
s=c+r;
while (c<g) {
f *= RADIX;
c *= sqrdx;
}
g=r*RADIX;
while (c>g) {
f /= RADIX;
c /= sqrdx;
}
if ((c+r)/f < 0.95*s) {
last=0;
g=1.0/f;
for (j=1;j<=n;j++) a[i][j] *= g;
for (j=1;j<=n;j++) a[j][i] *= f;
}
}
}
}
}
#undef RADIX
void elmhes(double **a, int n)
{
int m,j,i;
double y,x;
double temp;
for (m=2;m<n;m++) {
x=0.0;
i=m;
for (j=m;j<=n;j++) {
if (fabs(a[j][m-1]) > fabs(x)) {
x=a[j][m-1];
i=j;
}
}
if (i != m) {
for (j=m-1;j<=n;j++) SWAP(a[i][j],a[m][j])
for (j=1;j<=n;j++) SWAP(a[j][i],a[j][m])
}
if (x) {
for (i=m+1;i<=n;i++) {
if ((y=a[i][m-1]) != 0.0) {
y /= x;
a[i][m-1]=y;
for (j=m;j<=n;j++)
a[i][j] -= y*a[m][j];
for (j=1;j<=n;j++)
a[j][m] += y*a[j][i];
}
}
}
}
}
#define NRANSI
void hqr(double **a, int n, double wr[], double wi[])
{
int nn,m,l,k,j,its,i,mmin;
double z,y,x,w,v,u,t,s,r,q,p,anorm;
anorm=0.0;
for (i=1;i<=n;i++)
for (j=IMAX(i-1,1);j<=n;j++)
anorm += fabs(a[i][j]);
nn=n;
t=0.0;
while (nn >= 1) {
its=0;
do {
for (l=nn;l>=2;l--) {
s=fabs(a[l-1][l-1])+fabs(a[l][l]);
if (s == 0.0) s=anorm;
if ((double)(fabs(a[l][l-1]) + s) == s) break;
}
x=a[nn][nn];
if (l == nn) {
wr[nn]=x+t;
wi[nn--]=0.0;
} else {
y=a[nn-1][nn-1];
w=a[nn][nn-1]*a[nn-1][nn];
if (l == (nn-1)) {
p=0.5*(y-x);
q=p*p+w;
z=sqrt(fabs(q));
x += t;
if (q >= 0.0) {
z=p+SIGN(z,p);
wr[nn-1]=wr[nn]=x+z;
if (z) wr[nn]=x-w/z;
wi[nn-1]=wi[nn]=0.0;
} else {
wr[nn-1]=wr[nn]=x+p;
wi[nn-1]= -(wi[nn]=z);
}
nn -= 2;
} else {
if (its == 30) nrerror("Too many iterations in hqr");
if (its == 10 || its == 20) {
t += x;
for (i=1;i<=nn;i++) a[i][i] -= x;
s=fabs(a[nn][nn-1])+fabs(a[nn-1][nn-2]);
y=x=0.75*s;
w = -0.4375*s*s;
}
++its;
for (m=(nn-2);m>=l;m--) {
z=a[m][m];
r=x-z;
s=y-z;
p=(r*s-w)/a[m+1][m]+a[m][m+1];
q=a[m+1][m+1]-z-r-s;
r=a[m+2][m+1];
s=fabs(p)+fabs(q)+fabs(r);
p /= s;
q /= s;
r /= s;
if (m == l) break;
u=fabs(a[m][m-1])*(fabs(q)+fabs(r));
v=fabs(p)*(fabs(a[m-1][m-1])+fabs(z)+fabs(a[m+1][m+1]));
if ((double)(u+v) == v) break;
}
for (i=m+2;i<=nn;i++) {
a[i][i-2]=0.0;
if (i != (m+2)) a[i][i-3]=0.0;
}
for (k=m;k<=nn-1;k++) {
if (k != m) {
p=a[k][k-1];
q=a[k+1][k-1];
r=0.0;
if (k != (nn-1)) r=a[k+2][k-1];
if ((x=fabs(p)+fabs(q)+fabs(r)) != 0.0) {
p /= x;
q /= x;
r /= x;
}
}
if ((s=SIGN(sqrt(p*p+q*q+r*r),p)) != 0.0) {
if (k == m) {
if (l != m)
a[k][k-1] = -a[k][k-1];
} else
a[k][k-1] = -s*x;
p += s;
x=p/s;
y=q/s;
z=r/s;
q /= p;
r /= p;
for (j=k;j<=nn;j++) {
p=a[k][j]+q*a[k+1][j];
if (k != (nn-1)) {
p += r*a[k+2][j];
a[k+2][j] -= p*z;
}
a[k+1][j] -= p*y;
a[k][j] -= p*x;
}
mmin = nn<k+3 ? nn : k+3;
for (i=l;i<=mmin;i++) {
p=x*a[i][k]+y*a[i][k+1];
if (k != (nn-1)) {
p += z*a[i][k+2];
a[i][k+2] -= p*r;
}
a[i][k+1] -= p*q;
a[i][k] -= p;
}
}
}
}
}
} while (l < nn-1);
}
}
#undef NRANSI
void tred2(double **a, int n, double d[], double e[])
{
int l,k,j,i;
double scale,hh,h,g,f;
for (i=n;i>=2;i--) {
l=i-1;
h=scale=0.0;
if (l > 1) {
for (k=1;k<=l;k++)
scale += fabs(a[i][k]);
if (scale == 0.0)
e[i]=a[i][l];
else {
for (k=1;k<=l;k++) {
a[i][k] /= scale;
h += a[i][k]*a[i][k];
}
f=a[i][l];
g=(f >= 0.0 ? -sqrt(h) : sqrt(h));
e[i]=scale*g;
h -= f*g;
a[i][l]=f-g;
f=0.0;
for (j=1;j<=l;j++) {
a[j][i]=a[i][j]/h;
g=0.0;
for (k=1;k<=j;k++)
g += a[j][k]*a[i][k];
for (k=j+1;k<=l;k++)
g += a[k][j]*a[i][k];
e[j]=g/h;
f += e[j]*a[i][j];
}
hh=f/(h+h);
for (j=1;j<=l;j++) {
f=a[i][j];
e[j]=g=e[j]-hh*f;
for (k=1;k<=j;k++)
a[j][k] -= (f*e[k]+g*a[i][k]);
}
}
} else
e[i]=a[i][l];
d[i]=h;
}
d[1]=0.0;
e[1]=0.0;
/* Contents of this loop can be omitted if eigenvectors not
wanted except for statement d[i]=a[i][i]; */
for (i=1;i<=n;i++) {
l=i-1;
if (d[i]) {
for (j=1;j<=l;j++) {
g=0.0;
for (k=1;k<=l;k++)
g += a[i][k]*a[k][j];
for (k=1;k<=l;k++)
a[k][j] -= g*a[k][i];
}
}
d[i]=a[i][i];
a[i][i]=1.0;
for (j=1;j<=l;j++) a[j][i]=a[i][j]=0.0;
}
}
double pythag(double a, double b)
{
double absa,absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}
#define NRANSI
void tqli(double d[], double e[], int n, double **z)
{
double pythag(double a, double b);
int m,l,iter,i,k;
double s,r,p,g,f,dd,c,b;
for (i=2;i<=n;i++) e[i-1]=e[i];
e[n]=0.0;
for (l=1;l<=n;l++) {
iter=0;
do {
for (m=l;m<=n-1;m++) {
dd=fabs(d[m])+fabs(d[m+1]);
if ((double)(fabs(e[m])+dd) == dd) break;
}
if (m != l) {
if (iter++ == 30) nrerror("Too many iterations in tqli");
g=(d[l+1]-d[l])/(2.0*e[l]);
r=pythag(g,1.0);
g=d[m]-d[l]+e[l]/(g+SIGN(r,g));
s=c=1.0;
p=0.0;
for (i=m-1;i>=l;i--) {
f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r == 0.0) {
d[i+1] -= p;
e[m]=0.0;
break;
}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;
for (k=1;k<=n;k++) {
f=z[k][i+1];
z[k][i+1]=s*z[k][i]+c*f;
z[k][i]=c*z[k][i]-s*f;
}
}
if (r == 0.0 && i >= l) continue;
d[l] -= p;
e[l]=g;
e[m]=0.0;
}
} while (m != l);
}
}
#undef NRANSI