COMMENT
synaptic current with exponential rise and decay conductance defined by
i = g * (v - e) i(nanoamps), g(micromhos);
where
g = 0 for t < onset and
g=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
for t > onset
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
THREADSAFE
POINT_PROCESS nmda
RANGE onset, tau0, tau1, gmax, e, i, g
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
}
PARAMETER {
onset=2 (ms)
tau0=3 (ms)
tau1=90 (ms)
gmax=.001 (umho)
e=5 (mV)
v (mV)
nmg = 0.3 (1) : eta*[Mg]o for eta = 0.25 (/mM) and [Mg]o = 1 mM
: 0.33 used in Polsky's glutamate.mod
: Zador et al. 1990 assumed eta = 0.33 (/mM)
gamma = 0.08 (/mV) : .08 used in Polsky's glutamate.mod
: Zador et al. 1990 used 0.06 (/mV)
}
ASSIGNED { i (nA) g (umho) }
LOCAL a[2]
LOCAL tpeak
LOCAL adjust
LOCAL amp
BREAKPOINT {
g = cond(t)
i = g*(v - e)
}
FUNCTION cond(x(ms))(umho) {
tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
adjust=1/((1-exp(-tpeak/tau0))-(1-exp(-tpeak/tau1)))
amp=adjust*gmax
if (x < onset) {
cond = 0
}else{
a[0]=1-exp(-(x-onset)/tau0)
a[1]=1-exp(-(x-onset)/tau1)
:cond = amp*(a[0]-a[1])
cond = (amp*(a[0]-a[1])/(1+nmg*exp(-gamma*(v))))
}
}