TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997
NEURON {
SUFFIX kap
USEION k READ ek WRITE ik
RANGE gbar,gka,ik
RANGE ninf,linf,taul,taun
GLOBAL lmin,nscale,lscale
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
dt (ms)
v (mV)
ek = -90 (mV) : must be explicitely def. in hoc
celsius = 24 (degC)
gbar=.008 (mho/cm2)
vhalfn=11 (mV)
vhalfl=-56 (mV)
a0l=0.05 (/ms)
a0n=0.05 (/ms)
zetan=-1.5 (1)
zetal=3 (1)
gmn=0.55 (1)
gml=1 (1)
lmin=2 (ms)
nmin=0.1 (ms)
pw=-1 (1)
tq=-40 (mV)
qq=5 (mV)
q10=5
qtl=1
nscale=1
lscale=1
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul (ms)
taun (ms)
gka (mho/cm2)
qt
}
INITIAL {
rates(v)
n=ninf
l=linf
gka = gbar*n*l
ik = gka*(v-ek)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gka = gbar*n*l
ik = gka*(v-ek)
}
DERIVATIVE states {
rates(v)
n' = (ninf-n)/taun
l' = (linf-l)/taul
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4(degC/mV)/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq)/qq))
betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4(degC/mV)/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4(degC/mV)/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4(degC/mV)/(8.315*(273.16+celsius)))
}
LOCAL facn,facl
:if state_borgka is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer. This is because
: only BREAKPOINT sets up the correct pointers to range variables.
:PROCEDURE states() { : exact when v held constant; integrates over dt step
: rates(v)
: n = n + facn*(ninf - n)
: l = l + facl*(linf - l)
: VERBATIM
: return 0;
: ENDVERBATIM
:}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10(degC))
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmin) {taun=nmin}
: taun=nmin
taun=taun/nscale
facn = (1 - exp(-dt/taun))
a = alpl(v)
linf = 1/(1+ a)
taul = 0.26(ms/mV)*(v+50)/qtl
if (taul<lmin/qtl) {taul=lmin/qtl}
taul=taul/lscale
facl = (1 - exp(-dt/taul))
}