COMMENT
**************************************************
File generated by: neuroConstruct v1.3.8
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
KA_ChannelML (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = K-A current for Mitral Cells from Wang et al (1996) M.Migliore Jan. 2002 Note, the values used here are based on the Neuron Mod scripts accompanyi ...
/channelml/ion/@name = k
/channelml/ion/@charge = 1
/channelml/ion/@default_erev = -90
/channelml/channel_type/@name = KA_ChannelML
/channelml/channel_type/@density = yes
/channelml/channel_type/notes = A-type K channel, with rate equations expressed in tau and inf form
/channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor
/channelml/channel_type/authorList/modelTranslator/institution = University of Cardiff
/channelml/channel_type/authorList/modelTranslator/email = simon.oconnor@btinternet.com
/channelml/channel_type/publication/fullTitle = Migliore, M., Hines, M.L., Shepherd, G.M. The Role of Distal Dendritic Gap Junctions in Synchronization of Mitral Cell Axonal Output J.Comput. Neurosc ...
/channelml/channel_type/publication/pubmedRef = http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15714267
/channelml/channel_type/neuronDBref/modelName = K channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/senselab/NeuronDB/channelGene2.htm#table3
/channelml/channel_type/current_voltage_relation/ohmic/@ion = k
/channelml/channel_type/current_voltage_relation/ohmic/conductance/@default_gmax = 2
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@q10_factor = 3
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@experimental_temp = 24
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/offset/@value = 0
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@name = m
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@fraction = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@name = h
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@fraction = 1
/channelml/channel_type/hh_gate[1]/@state = m
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 0.1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -45
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 0.075
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -45
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/tau/generic_equation_hh/@expr = beta / (0.04 *(1+alpha))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@value = -(0.071428571)
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@value = 17.5
/channelml/channel_type/hh_gate[2]/@state = h
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 0.2
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -70
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@type = exponential
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@expr = A*exp(k*(v-d))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 0.198
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -70
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/tau/generic_equation_hh/@expr = beta / (0.018 *(1+alpha))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[1]/@value = 1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[2]/@value = (0.166666666)
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/inf/parameterised_hh/parameter[3]/@value = -41.7
// File from which this was generated: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KA_ChannelML/KA_Chan.xml
// XSL file with mapping to simulator: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/KA_ChannelML/ChannelML_v1.8.0_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
K-A current for Mitral Cells from Wang et al (1996) M.Migliore Jan. 2002
Note, the values used here are based on the Neuron Mod scripts accompanying Migliore et al (2005)
ENDCOMMENT
TITLE Channel: KA_ChannelML
COMMENT
A-type K channel, with rate equations expressed in tau and inf form
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX KA_ChannelML
USEION k READ ek WRITE ik VALENCE 1 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
}
PARAMETER {
gmax = 0.0020 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of k
ek (mV)
? The outward flow of ion: k calculated by rate equations...
ik (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax*((1*m)^1)*((1*h)^1)
ik = gion*(v - ek)
}
INITIAL {
ek = -90
rates(v)
m = minf
h = hinf
}
STATE {
m
h
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta, temp_adj_m, A_alpha_m, k_alpha_m, d_alpha_m, A_beta_m, k_beta_m, d_beta_m, A_tau_m, k_tau_m, d_tau_m, A_inf_m, k_inf_m, d_inf_m, temp_adj_h, A_alpha_h, k_alpha_h, d_alpha_h, A_beta_h, k_beta_h, d_beta_h, A_tau_h, k_tau_h, d_tau_h, A_inf_h, k_inf_h, d_inf_h
TABLE minf, mtau,hinf, htau
DEPEND celsius
FROM -100 TO 100 WITH 400
UNITSOFF
? There is a Q10 factor which will alter the tau of the gates
temp_adj_m = 3^((celsius - 24)/10)
temp_adj_h = 3^((celsius - 24)/10)
? There is a voltage offset of 0. This will shift the dependency of the rate equations
v = v - (0)
? *** Adding rate equations for gate: m ***
? Found a parameterised form of rate equation for alpha, using expression: A*exp(k*(v-d))
A_alpha_m = 1
k_alpha_m = 0.1
d_alpha_m = -45
alpha = A_alpha_m * exp((v - d_alpha_m) * k_alpha_m)
? Found a parameterised form of rate equation for beta, using expression: A*exp(k*(v-d))
A_beta_m = 1
k_beta_m = 0.075
d_beta_m = -45
beta = A_beta_m * exp((v - d_beta_m) * k_beta_m)
? Found a generic form of the rate equation for tau, using expression: beta / (0.04 *(1+alpha))
tau = beta / (0.04 *(1+alpha))
mtau = tau/temp_adj_m
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp(k*(v-d)))
A_inf_m = 1
k_inf_m = -(0.071428571)
d_inf_m = 17.5
inf = A_inf_m / (exp((v - d_inf_m) * k_inf_m) + 1)
minf = inf
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a parameterised form of rate equation for alpha, using expression: A*exp(k*(v-d))
A_alpha_h = 1
k_alpha_h = 0.2
d_alpha_h = -70
alpha = A_alpha_h * exp((v - d_alpha_h) * k_alpha_h)
? Found a parameterised form of rate equation for beta, using expression: A*exp(k*(v-d))
A_beta_h = 1
k_beta_h = 0.198
d_beta_h = -70
beta = A_beta_h * exp((v - d_beta_h) * k_beta_h)
? Found a generic form of the rate equation for tau, using expression: beta / (0.018 *(1+alpha))
tau = beta / (0.018 *(1+alpha))
htau = tau/temp_adj_h
? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp(k*(v-d)))
A_inf_h = 1
k_inf_h = (0.166666666)
d_inf_h = -41.7
inf = A_inf_h / (exp((v - d_inf_h) * k_inf_h) + 1)
hinf = inf
? *** Finished rate equations for gate: h ***
}
UNITSON