COMMENT
**************************************************
File generated by: neuroConstruct v1.3.8
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
LCa3_mit_usb_ChannelML (Type: Channel mechanism, Model: ChannelML based process)
with parameters:
/channelml/@units = SI Units
/channelml/notes = ChannelML file containing a single Channel description
/channelml/ion/@name = ca
/channelml/ion/@charge = 2
/channelml/ion/@default_erev = 0.070
/channelml/channel_type/@name = LCa3_mit_usb_ChannelML
/channelml/channel_type/@density = yes
/channelml/channel_type/status/@value = stable
/channelml/channel_type/status/comment = L channel data from: T. Hirano and S. Hagiwara Pflugers A 413(5) pp463-469, 1989
/channelml/channel_type/status/contributor/name = Simon O'Connor
/channelml/channel_type/notes = L type calcium conductance Hirano and Hagiwara 1989
/channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor
/channelml/channel_type/authorList/modelTranslator/institution = University of Cardiff
/channelml/channel_type/authorList/modelTranslator/email = simon.oconnor@btinternet.com
/channelml/channel_type/publication/fullTitle = U. S. Bhalla and J. M. Bower, Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory ...
/channelml/channel_type/publication/pubmedRef = http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=7688798
/channelml/channel_type/neuronDBref/modelName = Na channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/senselab/NeuronDB/channelGene2.htm#table2
/channelml/channel_type/current_voltage_relation/ohmic/@ion = ca
/channelml/channel_type/current_voltage_relation/ohmic/conductance/@default_gmax = 120
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@name = m
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@fraction = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@name = h
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@fraction = 1
/channelml/channel_type/hh_gate[1]/@state = m
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 7500
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = -142.85714285714286
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = 0.013
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 1650
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 250
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = 0.014
/channelml/channel_type/hh_gate[2]/@state = h
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 6.800
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 83.333333333333
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -0.030
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 60
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = -90.90909090909
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = 0.0
/channelml/channel_type/impl_prefs/table_settings/@max_v = 0.05
/channelml/channel_type/impl_prefs/table_settings/@min_v = -0.1
/channelml/channel_type/impl_prefs/table_settings/@table_divisions = 3000
// File from which this was generated: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/LCa3_mit_usb_ChannelML/CaChannel.xml
// XSL file with mapping to simulator: /home/Simon/nC_projects/Rat_Mitral_Cell_Gap_Network_copy4/cellMechanisms/LCa3_mit_usb_ChannelML/ChannelML_v1.8.0_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: SI Units
COMMENT
ChannelML file containing a single Channel description
ENDCOMMENT
TITLE Channel: LCa3_mit_usb_ChannelML
COMMENT
L type calcium conductance Hirano and Hagiwara 1989
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX LCa3_mit_usb_ChannelML
USEION ca READ eca WRITE ica VALENCE 2 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
}
PARAMETER {
gmax = 0.012 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of ca
eca (mV)
? The outward flow of ion: ca calculated by rate equations...
ica (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax*((1*m)^1)*((1*h)^1)
ica = gion*(v - eca)
}
INITIAL {
eca = 70
rates(v)
m = minf
h = hinf
}
STATE {
m
h
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta, temp_adj_m, A_alpha_m, k_alpha_m, d_alpha_m, A_beta_m, k_beta_m, d_beta_m, temp_adj_h, A_alpha_h, k_alpha_h, d_alpha_h, A_beta_h, k_beta_h, d_beta_h
TABLE minf, mtau,hinf, htau
DEPEND celsius
FROM -100 TO 50 WITH 3000
UNITSOFF
temp_adj_m = 1
temp_adj_h = 1
? *** Adding rate equations for gate: m ***
? Found a parameterised form of rate equation for alpha, using expression: A / (1 + exp(k*(v-d)))
A_alpha_m = 7500
k_alpha_m = -142.85714285714286
d_alpha_m = 0.013
? Unit system in ChannelML file is SI units, therefore need to
? convert these to NEURON quanities...
A_alpha_m = A_alpha_m * 0.0010 ? 1/ms
k_alpha_m = k_alpha_m * 0.0010 ? mV
d_alpha_m = d_alpha_m * 1000 ? mV
alpha = A_alpha_m / (exp((v - d_alpha_m) * k_alpha_m) + 1)
? Found a parameterised form of rate equation for beta, using expression: A / (1 + exp(k*(v-d)))
A_beta_m = 1650
k_beta_m = 250
d_beta_m = 0.014
? Unit system in ChannelML file is SI units, therefore need to
? convert these to NEURON quanities...
A_beta_m = A_beta_m * 0.0010 ? 1/ms
k_beta_m = k_beta_m * 0.0010 ? mV
d_beta_m = d_beta_m * 1000 ? mV
beta = A_beta_m / (exp((v - d_beta_m) * k_beta_m) + 1)
mtau = 1/(temp_adj_m*(alpha + beta))
minf = alpha/(alpha + beta)
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a parameterised form of rate equation for alpha, using expression: A / (1 + exp(k*(v-d)))
A_alpha_h = 6.800
k_alpha_h = 83.333333333333
d_alpha_h = -0.030
? Unit system in ChannelML file is SI units, therefore need to
? convert these to NEURON quanities...
A_alpha_h = A_alpha_h * 0.0010 ? 1/ms
k_alpha_h = k_alpha_h * 0.0010 ? mV
d_alpha_h = d_alpha_h * 1000 ? mV
alpha = A_alpha_h / (exp((v - d_alpha_h) * k_alpha_h) + 1)
? Found a parameterised form of rate equation for beta, using expression: A / (1 + exp(k*(v-d)))
A_beta_h = 60
k_beta_h = -90.90909090909
d_beta_h = 0.0
? Unit system in ChannelML file is SI units, therefore need to
? convert these to NEURON quanities...
A_beta_h = A_beta_h * 0.0010 ? 1/ms
k_beta_h = k_beta_h * 0.0010 ? mV
d_beta_h = d_beta_h * 1000 ? mV
beta = A_beta_h / (exp((v - d_beta_h) * k_beta_h) + 1)
htau = 1/(temp_adj_h*(alpha + beta))
hinf = alpha/(alpha + beta)
? *** Finished rate equations for gate: h ***
}
UNITSON