# -*- coding: utf-8 -*-
# ALL SI UNITS
# milliMolar is same as mol/m^3
## USAGE: python2.6 average_odor_scaledpulses_noregress.py
import os,sys,math,string
import os.path
import pickle
import subprocess
cwd = os.getcwd() # current working directory
sys.path.extend(["..","../networks","../generators","../simulations"])
from stimuliConstants import * # has RESPIRATION
from pylab import * # part of matplotlib that depends on numpy but not scipy
from scipy import stats
from scipy import signal # for gaussian smoothing
from scipy import interpolate # for interp1d
from scipy import optimize # for fsolve
from sim_utils import * # has rebin() and imports data_utils.py for axes_off()
from analysis_utils import * # has rebin_mean() and read_pulsefile()
from calc_corrs import * # has calc_corrs()
## BE CAREFUL: use _constair_separateodors below, others are obsolete.
import fit_scaledpulses_noregress as fit_sp # has fit_plot_scaledpulses and ref pulse constants
import average_odor_morphs as corr_utils # has get_filename() for morphs
IN_VIVO = True
directed = True
FRAC_DIRECTED = 0.01 ## overrides the one in networkConstants.py (came in via sim_utils.py)
## Below two overide the variables that came in from stimuliConstantsMinimal.py via stimuliConstants.py
NONLINEAR_ORNS = False
NONLINEAR_TYPE = 'P' # P for primary glom non-linear, L for lateral gloms non-linear
_scaledWidth = 0.2 # s # overrides that in stimuliConstantsMinimal.py
num_scalings = len(pulseList)-1
#fullfilename = '../results/odor_morphs/morphs_random'
#if NONLINEAR_ORNS: fullfilename += 'NL'+NONLINEAR_TYPE
#fullfilename += '.pickle'
#fullfile = open(fullfilename,'r')
#morphs = pickle.load(fullfile)
#fullfile.close()
PLOTRESP_NUM = 1 # whether to plot 2 respiration cycles or 1
NUMBINS = 5
BIN_WIDTH_TIME = RESPIRATION/NUMBINS
bindt = RESPIRATION/float(NUMBINS)
## I take the last PLOTRESP_NUM of respiration cycles out of NUM_RESPS simulated
responsetlist = arange( SETTLETIME+(NUM_RESPS-PLOTRESP_NUM)*RESPIRATION+bindt/2.0, \
SETTLETIME+NUM_RESPS*RESPIRATION, RESPIRATION/NUMBINS )
min_frate_cutoff = 0.25 # Hz
salient = False#True
if salient:
stim_seeds = [-1,-19]#range(-1,-37,-1)#[-1,-2,-3,-4,-5,-6,-7,-8,-9]
num_gloms_list = [3]
## inh_options = [ (no_singles,no_joints,no_lat,no_PGs,varyRMP), ... ]
## in order,below options are:
## all cells; no lat; no joints, varyRMP; no PGs; no singles + no joints, only mitrals
#inh_options = [ (0,(False,False,False,False,False)), (1,(False,False,True,False,False)), \
# (2,(False,True,False,False,False)), (3,(False,False,False,False,True)), \
# (4,(False,False,False,True,False)), (5,(True,True,False,False,False)), \
# (6,(True,True,False,True,False))]
inh_options = [ (0,(False,False,False,False,False)), (1,(False,False,True,False,False)) ]
else:
#stim_seeds = [157.0,160.0,190.0,191.0,212.0,441.0]
#num_gloms_list = [5,2]
stim_seeds = arange(750.0,800.0,1.0)#[157.0,160.0,190.0,191.0]
num_gloms_list = [3]
## inh_options = [ (no_singles,no_joints,no_lat,no_PGs,varyRMP), ... ]
## in order,below options are: all cells; no lat; no joints, varyRMP; no PGs; only mitrals
inh_options = [ (0,(False,False,False,False,False)), (1,(False,False,True,False,False)), \
(2,(True,False,False,False,False)), (3,(True,True,False,False,True)), \
(6,(False,False,False,True,False)), (8,(True,True,False,True,False))]
net_seeds = [200.0]
def get_filename(netseed,stimseed,inh,ngi,\
nl_orns=NONLINEAR_ORNS,nl_type=NONLINEAR_TYPE,\
resultsdir='../results/odor_pulses'):
### read filename from the output file of automated run
## construct the filename
if inh[0]: singles_str = '_NOSINGLES'
else: singles_str = '_SINGLES'
if inh[1]: joints_str = '_NOJOINTS'
else: joints_str = '_JOINTS'
if inh[3]: pgs_str = '_NOPGS'
else: pgs_str = '_PGS'
if inh[2]: lat_str = '_NOLAT'
else: lat_str = '_LAT'
if inh[4]: varmitstr = '_VARMIT'
else: varmitstr = '_NOVARMIT'
## stable enough that time tags are not needed
filename = resultsdir+'/scaledpulses_width'+str(_scaledWidth)+\
'_netseed'+str(netseed)+'_stimseed'+str(stimseed)
if nl_orns: filename += '_NL'+nl_type
filename += singles_str+joints_str+pgs_str+lat_str+varmitstr+\
'_numgloms'+str(num_gloms_list[ngi])
if directed: filename += '_directed'+str(FRAC_DIRECTED)
filename += '.pickle'
return filename, (singles_str, joints_str, pgs_str, lat_str, varmitstr)
def plot_lin_contribs_oldpaperfigure():
""" plot linearity scores for all options
"""
fig1 = figure(figsize=(columnwidth,linfig_height),dpi=300,facecolor='w')
ax1a = plt.subplot2grid((2,5),(0,0)) # full
ax1b = plt.subplot2grid((2,5),(1,0)) # full
ax2a = plt.subplot2grid((2,5),(0,1)) # no lat
ax2b = plt.subplot2grid((2,5),(1,1)) # no lat
ax3a = plt.subplot2grid((2,5),(0,2)) # no self
ax3b = plt.subplot2grid((2,5),(1,2)) # no self
ax4a = plt.subplot2grid((2,5),(0,3)) # no inh
ax4b = plt.subplot2grid((2,5),(1,3)) # no inh
ax5a = plt.subplot2grid((2,5),(0,4)) # non-lin
ax5b = plt.subplot2grid((2,5),(1,4))
## inh = (no_singles,no_joints,no_lat,no_PGs,varyRMP)
inh_options = [
('',0,(False,False,False,False,False),'all',False,None,(ax1a,ax1b)), \
('',1,(False,False,True,False,False),'no lat-inh',False,None,(ax2a,ax2b)), \
('',2,(True,False,False,True,False),'no self-inh',False,None,(ax3a,ax3b)), \
('',3,(True,True,False,True,False),'no inh',False,None,(ax4a,ax4b)), \
('',4,(False,False,False,False,False),'non-lin ORNs',True,'P',(ax5a,ax5b)) ]
Rsqs_all = [ [] for i in range(len(inh_options)) ]
R_all = [ [] for i in range(len(inh_options)) ]
maxy_hist = 0.0
for ploti,(dirextn,inhi,inh,inhstr,nl_orns,nl_type,(axa,axb)) in enumerate(inh_options):
slopes_all = []
peaks_all = []
avg_frates_all = []
for stimi,stimseed in enumerate(stim_seeds):
filename, switch_strs \
= get_filename(stimseed,stimseed,inh,0,nl_orns,nl_type,\
resultsdir='../results/odor_pulses'+dirextn)
## if the result file for these seeds & tweaks doesn't exist,
## then carry on to the next.
if not os.path.exists(filename): continue
worker = fit_sp.fit_plot_scaledpulses(filename,stimseed,_scaledWidth)
fits_2mits,peaks_2mits = worker.fit_pulses(dirextn,True,False,False) # (dirextn,noshow,savefig,test)
for mitrali in [0,1]:
_,slopes,intercepts,r_values,_,_,se_slope,avg_frates = zip(*fits_2mits[mitrali])
## leave out the fit for reference with itself
r_values = delete(r_values,fit_sp.ref_response_scalenum-1)
R_all[ploti].extend(r_values)
Rsqs_all[ploti].extend(r_values**2)
nan_present = False
for slope in slopes:
if isnan(slope): nan_present = True
intercepts_bad = False
#for intercept in intercepts:
# if abs(intercept)>2.0: intercepts_bad = True
if not nan_present and not intercepts_bad:
slopes_all.append(slopes)
peaks_all.append(peaks_2mits[mitrali])
print filename
else:
print 'Left out :',filename
avg_frates_all.append(avg_frates)
slopes_mean = append([0],mean(slopes_all,axis=0))
slopes_std = append([0],std(slopes_all,axis=0))
peaks_mean = append([0],mean(peaks_all,axis=0))
peaks_std = append([0],std(peaks_all,axis=0))
avg_frates_mean = mean(avg_frates_all,axis=0)
print "The average firing rates for the different scaling is",avg_frates_mean
print "Peaks mean is",peaks_mean
## plots
axa.hist(R_all[ploti],10,range=(0,1.0),normed=True,histtype='step',\
linewidth=linewidth,color='k',ls='solid')
xmin,xmax,ymin,ymax = \
beautify_plot(axa,x0min=True,y0min=True,xticksposn='bottom',yticksposn='left',yticks=[])
axa.set_ylim(0,ymax) # later this is set to the max over all histograms maxy_hist
maxy_hist = max(maxy_hist,ymax)
## x-axis label for full first row
if inhi==2:
axes_labels(axa,"correlation with 1x","",xpad=2)
#axa.xaxis.set_label_coords(1.3,-0.25)
### inset plots within subplots
### passing transform=ax.transAxes to add_axes() doesn't work, hence jugglery from
### http://matplotlib.1069221.n5.nabble.com/Adding-custom-axes-within-a-subplot-td20316.html
#Bbox = matplotlib.transforms.Bbox.from_bounds(1.6, 0.4, 0.6, 0.6)
#trans = ax.transAxes + fig1.transFigure.inverted()
#l, b, w, h = matplotlib.transforms.TransformedBbox(Bbox,trans).bounds
#axinset = fig1.add_axes([l, b, w, h])
xconcs = array(scaledList[1:])
ref_scale = scaledList[fit_sp.ref_response_scalenum]
print "Slopes are =",slopes_mean*ref_scale
#axb.plot(range(6),range(6),color=(0,0,0.7,0.5),dashes=(2.0,1.0)) # linear reference
axb.errorbar(x=append([0],xconcs),y=peaks_mean,yerr=peaks_std,\
color='k',linewidth=linewidth,capsize=cap_size)
#for slopes in slopes_all:
# axb.plot(xconcs,array(slopes)*ref_scale,linewidth=linewidth)
_,_,_,ymax = beautify_plot(axb,x0min=True,y0min=True,\
xticksposn='bottom',yticksposn='left',yticks=[])
axb.set_xlim(0,5)
axb.set_ylim(0,180)
axb.set_xticks([0,1,5])
axb.set_yticks([])
### Draw the twin y axis (turned off always by beautify_plot)
#for loc, spine in axb.spines.items(): # items() returns [(key,value),...]
# spine.set_linewidth(axes_linewidth)
# if loc in ['right']:
# spine.set_color('k') # draw spine in black
## x-axis label for full second row
if inhi==2:
axes_labels(axb,"ORN scaling","",xpad=2)
#axb.xaxis.set_label_coords(1.3,-0.25)
if inhi==0: # laebl twin y axes of rightmost plot
axb.set_yticks([0,180])
axes_labels(axb,'','peak (Hz)',ypad=-6) # to set font size for twin y ticklabels
for i,(_,_,_,_,_,_,(axa,axb)) in enumerate(inh_options):
axa.set_ylim(0,maxy_hist)
if i==0: # label y axis for left-most plots
axa.set_yticks([0,maxy_hist])
axes_labels(axa,'','density',ypad=2)
fig1.tight_layout()
fig_clip_off(fig1)
fig1.subplots_adjust(top=0.95,left=0.1,bottom=0.15,right=0.98,wspace=0.4,hspace=0.4)
#fig1.text(0.31,0.65,'density',fontsize=label_fontsize,\
# rotation='vertical', transform=fig1.transFigure)
#fig1.text(0.6,0.025,'$R^2$',fontsize=label_fontsize,transform=fig1.transFigure)
fig1.savefig('../figures/lin_contribs_scaledpulses.svg',dpi=fig1.dpi)
fig1.savefig('../figures/lin_contribs_scaledpulses.png',dpi=fig1.dpi)
def plot_lin_contribs_paperfigure():
""" plot linearity scores for all options
"""
fig1 = figure(figsize=(columnwidth,linfig_height),dpi=300,facecolor='w')
ax1a = plt.subplot2grid((2,5),(0,0)) # full
ax1b = plt.subplot2grid((2,5),(1,0)) # full
ax2a = plt.subplot2grid((2,5),(0,1)) # no lat
ax2b = plt.subplot2grid((2,5),(1,1)) # no lat
ax3a = plt.subplot2grid((2,5),(0,2)) # no self
ax3b = plt.subplot2grid((2,5),(1,2)) # no self
ax4a = plt.subplot2grid((2,5),(0,3)) # no inh
ax4b = plt.subplot2grid((2,5),(1,3)) # no inh
ax5a = plt.subplot2grid((2,5),(0,4)) # non-lin
ax5b = plt.subplot2grid((2,5),(1,4))
## inh = (no_singles,no_joints,no_lat,no_PGs,varyRMP)
inh_options = [
('',0,(False,False,False,False,False),'all',False,None,(ax1a,ax1b)), \
('',1,(False,False,True,False,False),'no lat-inh',False,None,(ax2a,ax2b)), \
('',2,(True,False,False,True,False),'no self-inh',False,None,(ax3a,ax3b)), \
('',3,(True,True,False,True,False),'no inh',False,None,(ax4a,ax4b)), \
('',4,(False,False,False,False,False),'non-lin ORNs',True,'P',(ax5a,ax5b)) ]
Rsqs_all = [ [] for i in range(len(inh_options)) ]
R_all = [ [] for i in range(len(inh_options)) ]
maxy_R = 0.0
for ploti,(dirextn,inhi,inh,inhstr,nl_orns,nl_type,(axa,axb)) in enumerate(inh_options):
slopes_all = []
peaks_all = []
avg_frates_all = []
R_thisinh = []
for stimi,stimseed in enumerate(stim_seeds):
filename, switch_strs \
= get_filename(stimseed,stimseed,inh,0,nl_orns,nl_type,\
resultsdir='../results/odor_pulses'+dirextn)
## if the result file for these seeds & tweaks doesn't exist,
## then carry on to the next.
if not os.path.exists(filename): continue
worker = fit_sp.fit_plot_scaledpulses(filename,stimseed,_scaledWidth)
fits_2mits,peaks_2mits = worker.fit_pulses(dirextn,True,False,False) # (dirextn,noshow,savefig,test)
for mitrali in [0,1]:
_,slopes,intercepts,r_values,_,_,se_slope,avg_frates = zip(*fits_2mits[mitrali])
R_thisinh.append(r_values)
## leave out the fit for reference with itself
r_values = delete(r_values,fit_sp.ref_response_scalenum-1)
R_all[ploti].extend(r_values)
Rsqs_all[ploti].extend(r_values**2)
nan_present = False
for slope in slopes:
if isnan(slope): nan_present = True
intercepts_bad = False
#for intercept in intercepts:
# if abs(intercept)>2.0: intercepts_bad = True
if not nan_present and not intercepts_bad:
slopes_all.append(slopes)
peaks_all.append(peaks_2mits[mitrali])
print filename
else:
print 'Left out :',filename
avg_frates_all.append(avg_frates)
slopes_mean = append([0],mean(slopes_all,axis=0))
slopes_std = append([0],std(slopes_all,axis=0))
peaks_mean = append([0],mean(peaks_all,axis=0))
peaks_std = append([0],std(peaks_all,axis=0))
avg_frates_mean = mean(avg_frates_all,axis=0)
print "The average firing rates for the different scaling is",avg_frates_mean
print "Peaks mean is",peaks_mean
## plots
R_mean = mean(R_thisinh,axis=0)
R_std = std(R_thisinh,axis=0)
xconcs = scaledList[1:]
axa.errorbar(xconcs,R_mean,R_std,linewidth=linewidth,color='b',\
ls='solid',marker='o',ms=marker_size,capsize=cap_size)
#axa.plot(xconcs,R_std,linewidth=linewidth,color='r',ls='solid',marker='x',ms=marker_size)
xmin,xmax,ymin,ymax = \
beautify_plot(axa,x0min=True,y0min=True,xticksposn='bottom',yticksposn='left',yticks=[])
axa.set_ylim(0,ymax) # later this is set to the max over all histograms maxy_hist
axa.set_xticks([0,1,2,5])
maxy_R = max(maxy_R,ymax)
## x-axis label for full first row
if inhi==2:
axes_labels(axa,"","",xpad=2) # ORN scaling is on the next row x-axis
#axa.xaxis.set_label_coords(1.3,-0.25)
### inset plots within subplots
### passing transform=ax.transAxes to add_axes() doesn't work, hence jugglery from
### http://matplotlib.1069221.n5.nabble.com/Adding-custom-axes-within-a-subplot-td20316.html
#Bbox = matplotlib.transforms.Bbox.from_bounds(1.6, 0.4, 0.6, 0.6)
#trans = ax.transAxes + fig1.transFigure.inverted()
#l, b, w, h = matplotlib.transforms.TransformedBbox(Bbox,trans).bounds
#axinset = fig1.add_axes([l, b, w, h])
xconcs = array(scaledList[1:])
ref_scale = scaledList[fit_sp.ref_response_scalenum]
print "Slopes are =",slopes_mean*ref_scale
#axb.plot(range(6),range(6),color=(0,0,0.7,0.5),dashes=(2.0,1.0)) # linear reference
axb.errorbar(x=append([0],xconcs),y=peaks_mean,yerr=peaks_std,\
color='b',linewidth=linewidth,capsize=cap_size)
#for slopes in slopes_all:
# axb.plot(xconcs,array(slopes)*ref_scale,linewidth=linewidth)
_,_,_,ymax = beautify_plot(axb,x0min=True,y0min=True,\
xticksposn='bottom',yticksposn='left',yticks=[])
axb.set_xlim(0,5)
axb.set_ylim(0,180)
axb.set_xticks([0,1,2,5])
axb.set_yticks([])
### Draw the twin y axis (turned off always by beautify_plot)
#for loc, spine in axb.spines.items(): # items() returns [(key,value),...]
# spine.set_linewidth(axes_linewidth)
# if loc in ['right']:
# spine.set_color('k') # draw spine in black
## x-axis label for full second row
if inhi==2:
axes_labels(axb,"conc (% SV)","",xpad=2)
#axb.xaxis.set_label_coords(1.3,-0.25)
if inhi==0: # laebl twin y axes of rightmost plot
axb.set_yticks([0,180])
axes_labels(axb,'','peak (Hz)',ypad=-6) # to set font size for twin y ticklabels
for i,(_,_,_,_,_,_,(axa,axb)) in enumerate(inh_options):
axa.set_ylim(0,1)
if i==0: # label y axis for left-most plots
axa.set_yticks([0,1])
axes_labels(axa,'','corr to 1%',ypad=2)
fig1.tight_layout()
fig_clip_off(fig1)
fig1.subplots_adjust(top=0.95,left=0.1,bottom=0.15,right=0.98,wspace=0.4,hspace=0.4)
#fig1.text(0.31,0.65,'density',fontsize=label_fontsize,\
# rotation='vertical', transform=fig1.transFigure)
#fig1.text(0.6,0.025,'$R^2$',fontsize=label_fontsize,transform=fig1.transFigure)
fig1.savefig('../figures/lin_contribs_scaledpulses.svg',dpi=fig1.dpi)
fig1.savefig('../figures/lin_contribs_scaledpulses.png',dpi=fig1.dpi)
def plot_responseshapes_vs_conc():
fig = figure(figsize=(columnwidth/3.*2,linfig_height/2.),dpi=300,facecolor='w')
ax1 = fig.add_subplot(1,2,1)
ax2 = fig.add_subplot(1,2,2)
xconcs = array(scaledList[1:])
## inh = (no_singles,no_joints,no_lat,no_PGs,varyRMP)
inh_option = ('',0,(False,False,False,False,False),'all',False,None)
tpeaks_all = []
tpeaks_normed_all = []
durations_normed_all = []
risetimes_all = []
durations_all = []
deltapeaks_all = []
latencies_all = []
latencies_normed_all = []
(dirextn,inhi,inh,inhstr,nl_orns,nl_type) = inh_option
for stimi,stimseed in enumerate(stim_seeds):
filename, switch_strs \
= get_filename(stimseed,stimseed,inh,0,nl_orns,nl_type,\
resultsdir='../results/odor_pulses'+dirextn)
## if the result file for these seeds & tweaks doesn't exist,
## then carry on to the next.
if not os.path.exists(filename): continue
print filename
######### load in the mitral pulse responses
#### mitral_responses_list[avgnum][scalenum][mitralnum][spikenum]
#### mitral_responses_binned_list[avgnum][scalenum][mitralnum][binnum]
mitral_responses_list, mitral_responses_binned_list = read_pulsefile(filename)
##-------------------------- rebin the responses and pulses ------------------------------
## rebin sim responses to pulserebindt=50ms, then take mean
numtrials,mitral_responses_mean,mitral_responses_std = \
rebin_mean(mitral_responses_list,fit_sp.pulserebindt,SCALED_RUNTIME)
for mitrali in [0,1]:
## take the odor responses of the mitral to be fitted
firingbinsmeanList = mitral_responses_mean[:,mitrali]
starti = int(PULSE_START/fit_sp.pulserebindt)
endi = int((PULSE_START+scaledWidth+kernel_time)/fit_sp.pulserebindt)
air_bgnd = firingbinsmeanList[0]
air_bgnd_relevant = firingbinsmeanList[0][starti:endi]
tpeaks = []
risetimes = []
durations = []
deltapeaks = []
latencies = []
for scalenum in [1,2,3,4,5]: ## conc scaled pulses
## find the mean first spike latency after odor onset
latency = 0
for avgi in range(len(mitral_responses_list)):
for spiketime in mitral_responses_list[avgi][scalenum][mitrali]:
if spiketime > PULSE_START:
latency += spiketime - PULSE_START
break
latency_mean = latency / float(len(mitral_responses_list))
latencies.append(latency_mean)
## find peak times and durations of binned responses
scale = scaledList[scalenum]
response = firingbinsmeanList[scalenum][starti:endi]-air_bgnd_relevant
tpeak = argmax(response)
tpeaks.append(tpeak)
##--------- Calculate half-max duration of the response
## f is an interpolated 1D function that gives
## down-shifted response that is zero at halfmax for fsolve/bisect below
f = interpolate.interp1d(range(len(response)),response-max(response)/2.,\
bounds_error=False,fill_value=0.0)
### fsolve to find half-max points on either side of tpeak
### but often gives negative values!! so ditch this
#halfresp_low = optimize.fsolve(f,tpeak-1)[0]
#halfresp_high = optimize.fsolve(f,tpeak+1)[0]
## use bisect to find halfmax pt within an interval
## but bisect need opposite signs at the ends of the interval
## else ValueError, so increase interval, till you get it
tmin = tpeak-1
while True:
try:
halfresp_low = optimize.bisect(f,tpeak,tmin-1)
break
except ValueError:
tmin -= 1
tmax = tpeak+1
while True:
try:
halfresp_high = optimize.bisect(f,tpeak,tmax)
break
except ValueError:
tmax += 1
risetimes.append(halfresp_low)
duration = (halfresp_high-halfresp_low)
durations.append(duration)
## take only the reduction in the time to peak vs concentration
tpeaks = array(tpeaks)*fit_sp.pulserebindt*1000
risetimes = array(risetimes)*fit_sp.pulserebindt*1000
durations = array(durations) *fit_sp.pulserebindt*1000
tpeaks_all.append(tpeaks)
tpeaks_normed_all.append(tpeaks/mean(tpeaks))
risetimes_all.append(risetimes)
durations_all.append(durations)
durations_normed_all.append(durations/mean(durations))
deltapeaks = [tpeaks[-1]-tpeaks[-2],tpeaks[-2]-tpeaks[-3]]
deltapeaks_all.extend(deltapeaks)
latencies_all.append(latencies)
latencies_normed_all.append(latencies/mean(latencies))
#ax1.plot(xconcs,tpeaks)
#ax2.plot(xconcs,durations)
tpeaks_mean = mean(tpeaks_all,axis=0)
tpeaks_std = std(tpeaks_all,axis=0)
tpeaks_normed_mean = mean(tpeaks_normed_all,axis=0)
tpeaks_normed_se = std(tpeaks_normed_all,axis=0) / sqrt(len(tpeaks_normed_all))
risetimes_mean = mean(risetimes_all,axis=0)
risetimes_std = std(risetimes_all,axis=0)
durations_mean = mean(durations_all,axis=0)
durations_std = std(durations_all,axis=0)
durations_normed_mean = mean(durations_normed_all,axis=0)
durations_normed_se = std(durations_normed_all,axis=0) / sqrt(len(durations_normed_all))
latencies_mean = mean(latencies_all,axis=0)
latencies_std = std(latencies_all,axis=0)
latencies_normed_mean = mean(latencies_normed_all,axis=0)
latencies_normed_se = std(latencies_normed_all,axis=0) / sqrt(len(latencies_normed_all))
## plots
ax1.errorbar(xconcs,latencies_normed_mean,latencies_normed_se,color='b',linewidth=linewidth)
#ax1.errorbar(xconcs,risetimes_mean,risetimes_std,color='b',linewidth=linewidth)
ax2.errorbar(xconcs,tpeaks_normed_mean,tpeaks_normed_se,color='b',linewidth=linewidth)
#ax2.errorbar(xconcs,durations_normed_mean,durations_normed_se,color='b',linewidth=linewidth)
for i,ax in enumerate([ax1,ax2]):
_,_,ymin,ymax = beautify_plot(ax,x0min=True,y0min=False,\
xticksposn='bottom',yticksposn='left')
ax.set_xlim(0,5)
ax.set_xticks([0,1,2,5])
ax.set_yticks([ymin,1,ymax])
axes_labels(ax,'conc (% SV)',['norm-t-spike','norm-t-peak'][i])
### Draw the twin y axis (turned off always by beautify_plot)
#for loc, spine in axb.spines.items(): # items() returns [(key,value),...]
# spine.set_linewidth(axes_linewidth)
# if loc in ['right']:
# spine.set_color('k') # draw spine in black
fig_clip_off(fig)
fig.tight_layout()
fig.savefig('../figures/scaledpulses_latency.svg',dpi=fig.dpi)
fig.savefig('../figures/scaledpulses_latency.png',dpi=fig.dpi)
fig = figure()
ax = fig.add_subplot(111)
ax.hist(deltapeaks_all)
axes_labels(ax,'delta peak times','#')
if __name__ == "__main__":
## plot linearity with parts of the network removed / tweaked
#plot_lin_contribs_oldpaperfigure()
## PAPER figure. Similar to above, but plotting mean and sd of corr with 1x
## versus concentration instead of a combined distrib.
plot_lin_contribs_paperfigure()
## Compare pulse shapes versus concentration
plot_responseshapes_vs_conc()
show()