COMMENT
Conceptual model: Delayed rectifier current for
a model of a fast-spiking cortical interneuron.
Authors and citation:
Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007).
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons.
PLoS Comput Biol 3:e156.
Original implementation and programming language/simulation environment:
by Golomb et al. for XPP
Available from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=97747
This implementation is by N.T. Carnevale and V. Yamini for NEURON.
ENDCOMMENT
NEURON {
SUFFIX kv3
USEION k READ ek WRITE ik
RANGE ik
RANGE gkdr, g
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gkdr = 0.225 (S/cm2)
theta_hn = -12.4 (mV)
sigma_n = 6.8 (mV)
q10=3
celsius
}
ASSIGNED {
v (mV)
ek (mV)
ik (mA/cm2)
g (S/cm2)
}
STATE {n}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gkdr * n^2
ik = g * (v-ek)
}
INITIAL {
n = ninfi(v)
}
DERIVATIVE states {
LOCAL qt
qt=q10^((celsius-24)/10)
n' = (ninfi(v)-n)/(taun(v)/qt)
}
FUNCTION ninfi(v (mV)) {
UNITSOFF
ninfi=1/(1 + exp(-(v-theta_hn)/sigma_n))
UNITSON
}
FUNCTION taun(v (mV)) (ms) {
UNITSOFF
taun = (0.087 + 11.4 / (1 + exp ((v+14.6)/8.6))) * (0.087 + 11.4 / (1 + exp (-(v-1.3)/18.7)))
UNITSON
}