/* Created by Language version: 7.5.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__NMDAeee
#define _nrn_initial _nrn_initial__NMDAeee
#define nrn_cur _nrn_cur__NMDAeee
#define _nrn_current _nrn_current__NMDAeee
#define nrn_jacob _nrn_jacob__NMDAeee
#define nrn_state _nrn_state__NMDAeee
#define _net_receive _net_receive__NMDAeee 
#define release release__NMDAeee 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define Cdur _p[0]
#define Alpha _p[1]
#define Beta _p[2]
#define e _p[3]
#define gmax _p[4]
#define iNMDA _p[5]
#define g _p[6]
#define ica _p[7]
#define Ron _p[8]
#define Roff _p[9]
#define Rinf _p[10]
#define Rtau _p[11]
#define synon _p[12]
#define B _p[13]
#define cai _p[14]
#define cao _p[15]
#define DRon _p[16]
#define DRoff _p[17]
#define v _p[18]
#define _g _p[19]
#define _tsav _p[20]
#define _nd_area  *_ppvar[0]._pval
#define _ion_cai	*_ppvar[2]._pval
#define _ion_cao	*_ppvar[3]._pval
#define _ion_ica	*_ppvar[4]._pval
#define _ion_dicadv	*_ppvar[5]._pval
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static double _hoc_ghk();
 static double _hoc_ghkg();
 static double _hoc_mgblock();
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 extern Prop* nrn_point_prop_;
 static int _pointtype;
 static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
 return create_point_process(_pointtype, _ho);
}
 static void _hoc_destroy_pnt();
 static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
 return loc_point_process(_pointtype, _vptr);
}
 static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
 return has_loc_point(_vptr);
}
 static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
 double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata(void* _vptr) { Prop* _prop;
 _prop = ((Point_process*)_vptr)->_prop;
   _setdata(_prop);
 }
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 0,0
};
 static Member_func _member_func[] = {
 "loc", _hoc_loc_pnt,
 "has_loc", _hoc_has_loc,
 "get_loc", _hoc_get_loc_pnt,
 "ghk", _hoc_ghk,
 "ghkg", _hoc_ghkg,
 "mgblock", _hoc_mgblock,
 0, 0
};
#define _f_mgblock _f_mgblock_NMDAeee
#define ghk ghk_NMDAeee
#define ghkg ghkg_NMDAeee
#define mgblock mgblock_NMDAeee
 extern double _f_mgblock( _threadargsprotocomma_ double );
 extern double ghk( _threadargsprotocomma_ double , double , double , double );
 extern double ghkg( _threadargsprotocomma_ double , double , double , double );
 extern double mgblock( _threadargsprotocomma_ double );
 
static void _check_mgblock(double*, Datum*, Datum*, _NrnThread*); 
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
   _check_mgblock(_p, _ppvar, _thread, _nt);
 }
 /* declare global and static user variables */
#define Cmax Cmax_NMDAeee
 double Cmax = 1;
#define fracca fracca_NMDAeee
 double fracca = 0.13;
#define mg mg_NMDAeee
 double mg = 1;
#define usetable usetable_NMDAeee
 double usetable = 1;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 "usetable_NMDAeee", 0, 1,
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "Cmax_NMDAeee", "mM",
 "mg_NMDAeee", "mM",
 "Cdur", "ms",
 "Alpha", "/ms",
 "Beta", "/ms",
 "e", "mV",
 "gmax", "uS",
 "iNMDA", "nA",
 "g", "umho",
 0,0
};
 static double Roff0 = 0;
 static double Ron0 = 0;
 static double delta_t = 0.01;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "Cmax_NMDAeee", &Cmax_NMDAeee,
 "mg_NMDAeee", &mg_NMDAeee,
 "fracca_NMDAeee", &fracca_NMDAeee,
 "usetable_NMDAeee", &usetable_NMDAeee,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 static void _hoc_destroy_pnt(_vptr) void* _vptr; {
   destroy_point_process(_vptr);
}
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[7]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.5.0",
"NMDAeee",
 "Cdur",
 "Alpha",
 "Beta",
 "e",
 "gmax",
 0,
 "iNMDA",
 "g",
 "ica",
 0,
 "Ron",
 "Roff",
 0,
 0};
 static Symbol* _ca_sym;
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
  if (nrn_point_prop_) {
	_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
	_p = nrn_point_prop_->param;
	_ppvar = nrn_point_prop_->dparam;
 }else{
 	_p = nrn_prop_data_alloc(_mechtype, 21, _prop);
 	/*initialize range parameters*/
 	Cdur = 1;
 	Alpha = 4;
 	Beta = 0.0015;
 	e = 0;
 	gmax = 1;
  }
 	_prop->param = _p;
 	_prop->param_size = 21;
  if (!nrn_point_prop_) {
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 8, _prop);
  }
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 prop_ion = need_memb(_ca_sym);
 nrn_promote(prop_ion, 1, 0);
 	_ppvar[2]._pval = &prop_ion->param[1]; /* cai */
 	_ppvar[3]._pval = &prop_ion->param[2]; /* cao */
 	_ppvar[4]._pval = &prop_ion->param[3]; /* ica */
 	_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dicadv */
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 
#define _tqitem &(_ppvar[6]._pvoid)
 static void _net_receive(Point_process*, double*, double);
 static void _update_ion_pointer(Datum*);
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _NMDAeee_reg() {
	int _vectorized = 1;
  _initlists();
 	ion_reg("ca", -10000.);
 	_ca_sym = hoc_lookup("ca_ion");
 	_pointtype = point_register_mech(_mechanism,
	 nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
	 hoc_nrnpointerindex, 1,
	 _hoc_create_pnt, _hoc_destroy_pnt, _member_func);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
     _nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
     _nrn_thread_table_reg(_mechtype, _check_table_thread);
  hoc_register_prop_size(_mechtype, 21, 8);
  hoc_register_dparam_semantics(_mechtype, 0, "area");
  hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
  hoc_register_dparam_semantics(_mechtype, 2, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 4, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 5, "ca_ion");
  hoc_register_dparam_semantics(_mechtype, 6, "netsend");
  hoc_register_dparam_semantics(_mechtype, 7, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 pnt_receive[_mechtype] = _net_receive;
 pnt_receive_size[_mechtype] = 5;
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 NMDAeee /Users/Penny/Dropbox/ModelDB/mod/x86_64/NMDAeee.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
 static double FARADAY = 96485.3;
 static double R = 8.3145;
 static double *_t_mgblock;
static int _reset;
static char *modelname = "simple NMDA receptors";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static double _n_mgblock(_threadargsprotocomma_ double _lv);
 static int _slist1[2], _dlist1[2];
 static int release(_threadargsproto_);
 
double ghkg ( _threadargsprotocomma_ double _lv , double _lci , double _lco , double _lz ) {
   double _lghkg;
 double _lxi , _lf , _lexi , _lfxi ;
 _lf = R * ( celsius + 273.15 ) / ( _lz * ( 1e-3 ) * FARADAY ) ;
   _lxi = _lv / _lf ;
   _lexi = exp ( _lxi ) ;
   if ( fabs ( _lxi ) < 1e-4 ) {
     _lfxi = 1.0 - _lxi / 2.0 ;
     }
   else {
     _lfxi = _lxi / ( _lexi - 1.0 ) ;
     }
   _lghkg = _lf * ( ( _lci / _lco ) * _lexi - 1.0 ) * _lfxi ;
   
return _lghkg;
 }
 
static double _hoc_ghkg(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r =  ghkg ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
 return(_r);
}
 
double ghk ( _threadargsprotocomma_ double _lv , double _lci , double _lco , double _lz ) {
   double _lghk;
 double _lxi , _lf , _lexi , _lfxi ;
 _lf = R * ( celsius + 273.15 ) / ( _lz * ( 1e-3 ) * FARADAY ) ;
   _lxi = _lv / _lf ;
   _lexi = exp ( _lxi ) ;
   if ( fabs ( _lxi ) < 1e-4 ) {
     _lfxi = 1.0 - _lxi / 2.0 ;
     }
   else {
     _lfxi = _lxi / ( _lexi - 1.0 ) ;
     }
   _lghk = ( .001 ) * _lz * FARADAY * ( _lci * _lexi - _lco ) * _lfxi ;
   
return _lghk;
 }
 
static double _hoc_ghk(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 _r =  ghk ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
 return(_r);
}
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   DRon = ( synon * Rinf - Ron ) / Rtau ;
   DRoff = - Beta * Roff ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 DRon = DRon  / (1. - dt*( ( ( ( - 1.0 ) ) ) / Rtau )) ;
 DRoff = DRoff  / (1. - dt*( ( - Beta )*( 1.0 ) )) ;
  return 0;
}
 /*END CVODE*/
 static int release (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
    Ron = Ron + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / Rtau)))*(- ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - Ron) ;
    Roff = Roff + (1. - exp(dt*(( - Beta )*( 1.0 ))))*(- ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - Roff) ;
   }
  return 0;
}
 static double _mfac_mgblock, _tmin_mgblock;
  static void _check_mgblock(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  static int _maktable=1; int _i, _j, _ix = 0;
  double _xi, _tmax;
  static double _sav_mg;
  if (!usetable) {return;}
  if (_sav_mg != mg) { _maktable = 1;}
  if (_maktable) { double _x, _dx; _maktable=0;
   _tmin_mgblock =  - 140.0 ;
   _tmax =  80.0 ;
   _dx = (_tmax - _tmin_mgblock)/1000.; _mfac_mgblock = 1./_dx;
   for (_i=0, _x=_tmin_mgblock; _i < 1001; _x += _dx, _i++) {
    _t_mgblock[_i] = _f_mgblock(_p, _ppvar, _thread, _nt, _x);
   }
   _sav_mg = mg;
  }
 }

 double mgblock(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) { 
#if 0
_check_mgblock(_p, _ppvar, _thread, _nt);
#endif
 return _n_mgblock(_p, _ppvar, _thread, _nt, _lv);
 }

 static double _n_mgblock(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
 double _xi, _theta;
 if (!usetable) {
 return _f_mgblock(_p, _ppvar, _thread, _nt, _lv); 
}
 _xi = _mfac_mgblock * (_lv - _tmin_mgblock);
 if (isnan(_xi)) {
  return _xi; }
 if (_xi <= 0.) {
 return _t_mgblock[0];
 }
 if (_xi >= 1000.) {
 return _t_mgblock[1000];
 }
 _i = (int) _xi;
 return _t_mgblock[_i] + (_xi - (double)_i)*(_t_mgblock[_i+1] - _t_mgblock[_i]);
 }

 
double _f_mgblock ( _threadargsprotocomma_ double _lv ) {
   double _lmgblock;
 _lmgblock = 1.0 / ( 1.0 + exp ( 0.062 * - _lv ) * ( mg / 3.57 ) ) ;
   
return _lmgblock;
 }
 
static double _hoc_mgblock(void* _vptr) {
 double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _p = ((Point_process*)_vptr)->_prop->param;
  _ppvar = ((Point_process*)_vptr)->_prop->dparam;
  _thread = _extcall_thread;
  _nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
 
#if 1
 _check_mgblock(_p, _ppvar, _thread, _nt);
#endif
 _r =  mgblock ( _p, _ppvar, _thread, _nt, *getarg(1) );
 return(_r);
}
 
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag; 
{  double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   _thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt;   _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
  if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
 _tsav = t;   if (_lflag == 1. ) {*(_tqitem) = 0;}
 {
   if ( _lflag  == 0.0 ) {
     _args[2] = _args[2] + 1.0 ;
     if (  ! _args[1] ) {
       _args[3] = _args[3] * exp ( - Beta * ( t - _args[4] ) ) ;
       _args[4] = t ;
       _args[1] = 1.0 ;
       synon = synon + _args[0] ;
           if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = Ron;
    double __primary = (Ron + _args[3] ) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( ( ( - 1.0 ) ) ) / Rtau ) ) )*( - ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - __primary );
    Ron += __primary;
  } else {
 Ron = Ron + _args[3]  ;
         }
     if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = Roff;
    double __primary = (Roff - _args[3] ) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - Beta )*( 1.0 ) ) ) )*( - ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - __primary );
    Roff += __primary;
  } else {
 Roff = Roff - _args[3]  ;
         }
 }
     net_send ( _tqitem, _args, _pnt, t +  Cdur , _args[2] ) ;
     }
   if ( _lflag  == _args[2] ) {
     _args[3] = _args[0] * Rinf + ( _args[3] - _args[0] * Rinf ) * exp ( - ( t - _args[4] ) / Rtau ) ;
     _args[4] = t ;
     synon = synon - _args[0] ;
         if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = Ron;
    double __primary = (Ron - _args[3] ) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( ( ( - 1.0 ) ) ) / Rtau ) ) )*( - ( ( ( ( synon )*( Rinf ) ) ) / Rtau ) / ( ( ( ( - 1.0 ) ) ) / Rtau ) - __primary );
    Ron += __primary;
  } else {
 Ron = Ron - _args[3]  ;
       }
     if (nrn_netrec_state_adjust && !cvode_active_){
    /* discon state adjustment for cnexp case (rate uses no local variable) */
    double __state = Roff;
    double __primary = (Roff + _args[3] ) - __state;
     __primary += ( 1. - exp( 0.5*dt*( ( - Beta )*( 1.0 ) ) ) )*( - ( 0.0 ) / ( ( - Beta )*( 1.0 ) ) - __primary );
    Roff += __primary;
  } else {
 Roff = Roff + _args[3]  ;
       }
 _args[1] = 0.0 ;
     }
   } }
 
static int _ode_count(int _type){ return 2;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  cao = _ion_cao;
     _ode_spec1 (_p, _ppvar, _thread, _nt);
  }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 2; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
  cai = _ion_cai;
  cao = _ion_cao;
 _ode_matsol_instance1(_threadargs_);
 }}
 extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
 static void _update_ion_pointer(Datum* _ppvar) {
   nrn_update_ion_pointer(_ca_sym, _ppvar, 2, 1);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 2);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 4, 3);
   nrn_update_ion_pointer(_ca_sym, _ppvar, 5, 4);
 }

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  Roff = Roff0;
  Ron = Ron0;
 {
   Rinf = Cmax * Alpha / ( Cmax * Alpha + Beta ) ;
   Rtau = 1.0 / ( Cmax * Alpha + Beta ) ;
   synon = 0.0 ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];

#if 0
 _check_mgblock(_p, _ppvar, _thread, _nt);
#endif
 _tsav = -1e20;
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
  cai = _ion_cai;
  cao = _ion_cao;
 initmodel(_p, _ppvar, _thread, _nt);
 }
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   B = mgblock ( _threadargscomma_ v ) ;
   g = ( Ron + Roff ) * B * gmax ;
   iNMDA = g * ( v - e ) * ( 1.0 - fracca ) ;
   if ( fracca > 0.0 ) {
     ica = g * ghkg ( _threadargscomma_ v , cai , cao , 2.0 ) * fracca ;
     }
   }
 _current += ica;
 _current += iNMDA;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
  cai = _ion_cai;
  cao = _ion_cao;
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ double _dica;
  _dica = ica;
 _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
  _ion_dicadv += (_dica - ica)/.001 * 1.e2/ (_nd_area);
 	}
 _g = (_g - _rhs)/.001;
  _ion_ica += ica * 1.e2/ (_nd_area);
 _g *=  1.e2/(_nd_area);
 _rhs *= 1.e2/(_nd_area);
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
  cai = _ion_cai;
  cao = _ion_cao;
 {   release(_p, _ppvar, _thread, _nt);
  } }}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(Ron) - _p;  _dlist1[0] = &(DRon) - _p;
 _slist1[1] = &(Roff) - _p;  _dlist1[1] = &(DRoff) - _p;
   _t_mgblock = makevector(1001*sizeof(double));
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif