/* Created by Language version: 7.5.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__nmda
#define _nrn_initial _nrn_initial__nmda
#define nrn_cur _nrn_cur__nmda
#define _nrn_current _nrn_current__nmda
#define nrn_jacob _nrn_jacob__nmda
#define nrn_state _nrn_state__nmda
#define _net_receive _net_receive__nmda
#define _f_nmda_rates _f_nmda_rates__nmda
#define nmda_states nmda_states__nmda
#define nmda_taus nmda_taus__nmda
#define nmda_rates nmda_rates__nmda
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define q10 _p[0]
#define Mg_time_factor _p[1]
#define onset _p[2]
#define e _p[3]
#define Mg _p[4]
#define gmax _p[5]
#define alfslope _p[6]
#define alfA _p[7]
#define betslope _p[8]
#define betA _p[9]
#define tau_on0 _p[10]
#define tau_onslope _p[11]
#define tau_off1_0 _p[12]
#define tau_off1slope _p[13]
#define tau_off2_0 _p[14]
#define tau_off2slope _p[15]
#define f0 _p[16]
#define fslope _p[17]
#define i _p[18]
#define g _p[19]
#define genv _p[20]
#define pinf _p[21]
#define alf _p[22]
#define bet _p[23]
#define taup _p[24]
#define tau_on _p[25]
#define tau_off1 _p[26]
#define tau_off2 _p[27]
#define f_fast _p[28]
#define p _p[29]
#define q _p[30]
#define Dp _p[31]
#define Dq _p[32]
#define v _p[33]
#define _g _p[34]
#define _nd_area *_ppvar[0]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static double _hoc_nmda_taus();
static double _hoc_nmda_rates();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"nmda_taus", _hoc_nmda_taus,
"nmda_rates", _hoc_nmda_rates,
0, 0
};
static void _check_nmda_rates(double*, Datum*, Datum*, _NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, int _type) {
_check_nmda_rates(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
#define usetable usetable_nmda
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_nmda", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"onset", "ms",
"e", "mV",
"gmax", "umho",
"alfslope", "mV",
"alfA", "/ms",
"betslope", "mV",
"betA", "/mM-ms",
"tau_on0", "ms",
"tau_onslope", "ms/mV",
"tau_off1_0", "ms",
"tau_off1slope", "ms/mV",
"tau_off2_0", "ms",
"tau_off2slope", "ms/mV",
"fslope", "/mV",
"q", "nanocoulombs",
"i", "nA",
"g", "uS",
"genv", "uS",
"taup", "ms",
"tau_on", "ms",
"tau_off1", "ms",
"tau_off2", "ms",
0,0
};
static double delta_t = 0.01;
static double p0 = 0;
static double q0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"usetable_nmda", &usetable_nmda,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[2]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.5.0",
"nmda",
"q10",
"Mg_time_factor",
"onset",
"e",
"Mg",
"gmax",
"alfslope",
"alfA",
"betslope",
"betA",
"tau_on0",
"tau_onslope",
"tau_off1_0",
"tau_off1slope",
"tau_off2_0",
"tau_off2slope",
"f0",
"fslope",
0,
"i",
"g",
"genv",
"pinf",
"alf",
"bet",
"taup",
"tau_on",
"tau_off1",
"tau_off2",
"f_fast",
0,
"p",
"q",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 35, _prop);
/*initialize range parameters*/
q10 = 3;
Mg_time_factor = 1;
onset = 0;
e = 0;
Mg = 1.8;
gmax = 0;
alfslope = 47;
alfA = 5.4;
betslope = 17;
betA = 0.61;
tau_on0 = 2.915;
tau_onslope = -0.004125;
tau_off1_0 = 61.5;
tau_off1slope = 0.5625;
tau_off2_0 = 352.5;
tau_off2slope = 5.7375;
f0 = 0.515;
fslope = -0.003125;
}
_prop->param = _p;
_prop->param_size = 35;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _NMDAmajor_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 1,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
hoc_register_prop_size(_mechtype, 35, 3);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 nmda /Users/Penny/Dropbox/ModelDB/mod/x86_64/NMDAmajor.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double *_t_pinf;
static double *_t_taup;
static double *_t_alf;
static double *_t_bet;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_nmda_rates(_threadargsprotocomma_ double);
static int nmda_taus(_threadargsprotocomma_ double, double);
static int nmda_rates(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static void _n_nmda_rates(_threadargsprotocomma_ double _lv);
static int _slist1[2], _dlist1[2];
static int nmda_states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
nmda_rates ( _threadargscomma_ v ) ;
nmda_taus ( _threadargscomma_ v , t ) ;
Dp = ( pinf - p ) / taup ;
Dq = i * ( 1e-3 ) ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
nmda_rates ( _threadargscomma_ v ) ;
nmda_taus ( _threadargscomma_ v , t ) ;
Dp = Dp / (1. - dt*( ( ( ( - 1.0 ) ) ) / taup )) ;
Dq = Dq / (1. - dt*( 0.0 )) ;
return 0;
}
/*END CVODE*/
static int nmda_states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
nmda_rates ( _threadargscomma_ v ) ;
nmda_taus ( _threadargscomma_ v , t ) ;
p = p + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taup)))*(- ( ( ( pinf ) ) / taup ) / ( ( ( ( - 1.0 ) ) ) / taup ) - p) ;
q = q - dt*(- ( ( i )*( ( 1e-3 ) ) ) ) ;
}
return 0;
}
static int nmda_taus ( _threadargsprotocomma_ double _lv , double _lt ) {
double _ltemp_factor ;
_ltemp_factor = pow( q10 , ( ( celsius - 28.50 ) / 10.0 ) ) ;
if ( _lt > onset ) {
f_fast = f0 + fslope * _lv ;
if ( f_fast > 1.0 ) {
f_fast = 1.0 ;
}
if ( f_fast < 0.0 ) {
f_fast = 0.0 ;
}
tau_on = ( tau_on0 + tau_onslope * _lv ) / _ltemp_factor ;
tau_off1 = ( tau_off1_0 + tau_off1slope * _lv ) / _ltemp_factor ;
tau_off2 = ( tau_off2_0 + tau_off2slope * _lv ) / _ltemp_factor ;
if ( tau_off1 < tau_off1_0 / 10.0 ) {
tau_off1 = tau_off1_0 / 10.0 ;
}
if ( tau_off2 < tau_off1 ) {
tau_off2 = tau_off1 ;
}
}
return 0; }
static double _hoc_nmda_taus(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = 1.;
nmda_taus ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
return(_r);
}
static double _mfac_nmda_rates, _tmin_nmda_rates;
static void _check_nmda_rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_q10;
static double _sav_celsius;
static double _sav_alfA;
static double _sav_betA;
static double _sav_Mg;
static double _sav_alfslope;
static double _sav_betslope;
if (!usetable) {return;}
if (_sav_q10 != q10) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_alfA != alfA) { _maktable = 1;}
if (_sav_betA != betA) { _maktable = 1;}
if (_sav_Mg != Mg) { _maktable = 1;}
if (_sav_alfslope != alfslope) { _maktable = 1;}
if (_sav_betslope != betslope) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_nmda_rates = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_nmda_rates)/200.; _mfac_nmda_rates = 1./_dx;
for (_i=0, _x=_tmin_nmda_rates; _i < 201; _x += _dx, _i++) {
_f_nmda_rates(_p, _ppvar, _thread, _nt, _x);
_t_pinf[_i] = pinf;
_t_taup[_i] = taup;
_t_alf[_i] = alf;
_t_bet[_i] = bet;
}
_sav_q10 = q10;
_sav_celsius = celsius;
_sav_alfA = alfA;
_sav_betA = betA;
_sav_Mg = Mg;
_sav_alfslope = alfslope;
_sav_betslope = betslope;
}
}
static int nmda_rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv) {
#if 0
_check_nmda_rates(_p, _ppvar, _thread, _nt);
#endif
_n_nmda_rates(_p, _ppvar, _thread, _nt, _lv);
return 0;
}
static void _n_nmda_rates(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_nmda_rates(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_nmda_rates * (_lv - _tmin_nmda_rates);
if (isnan(_xi)) {
pinf = _xi;
taup = _xi;
alf = _xi;
bet = _xi;
return;
}
if (_xi <= 0.) {
pinf = _t_pinf[0];
taup = _t_taup[0];
alf = _t_alf[0];
bet = _t_bet[0];
return; }
if (_xi >= 200.) {
pinf = _t_pinf[200];
taup = _t_taup[200];
alf = _t_alf[200];
bet = _t_bet[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
pinf = _t_pinf[_i] + _theta*(_t_pinf[_i+1] - _t_pinf[_i]);
taup = _t_taup[_i] + _theta*(_t_taup[_i+1] - _t_taup[_i]);
alf = _t_alf[_i] + _theta*(_t_alf[_i+1] - _t_alf[_i]);
bet = _t_bet[_i] + _theta*(_t_bet[_i+1] - _t_bet[_i]);
}
static int _f_nmda_rates ( _threadargsprotocomma_ double _lv ) {
double _ltemperature_factor ;
_ltemperature_factor = pow( q10 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
alf = _ltemperature_factor * alfA * exp ( _lv / alfslope ) ;
bet = _ltemperature_factor * betA * Mg * exp ( - _lv / betslope ) ;
taup = Mg_time_factor / ( alf + bet ) ;
pinf = alf / ( alf + bet ) ;
return 0; }
static double _hoc_nmda_rates(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
#if 1
_check_nmda_rates(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
nmda_rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
return(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
p = p0;
q = q0;
{
nmda_rates ( _threadargscomma_ v ) ;
nmda_taus ( _threadargscomma_ v , 1.1 * onset ) ;
p = pinf ;
q = 0.0 ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_nmda_rates(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
double _ltrel ;
if ( t > onset ) {
_ltrel = t - onset ;
genv = gmax * ( - exp ( - _ltrel / tau_on ) + f_fast * exp ( - _ltrel / tau_off1 ) + ( 1.0 - f_fast ) * exp ( - _ltrel / tau_off2 ) ) ;
g = genv * p ;
}
else {
genv = 0.0 ;
g = 0.0 ;
}
i = g * ( v - e ) ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ nmda_states(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(p) - _p; _dlist1[0] = &(Dp) - _p;
_slist1[1] = &(q) - _p; _dlist1[1] = &(Dq) - _p;
_t_pinf = makevector(201*sizeof(double));
_t_taup = makevector(201*sizeof(double));
_t_alf = makevector(201*sizeof(double));
_t_bet = makevector(201*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif