TITLE Sensory Axon Stin channels
: 06/16
: Jessica Gaines
:
: Modification of channel properties
:
: 04/15
: Lane Heyboer
:
: Fast K+ current
: Ih current
:
: 02/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
:
: Gaines JS, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A Model of
: Motor and Sensory Axon Activation in the Median Nerve Using Surface
: Electrical Stimulation. Journal of Computational Neuroscience, 2018.
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX gaines_sensory_stin
NONSPECIFIC_CURRENT ik
NONSPECIFIC_CURRENT il
NONSPECIFIC_CURRENT iq
NONSPECIFIC_CURRENT ikf
RANGE gkbar, gl, gq, gkf, ek, el, eq, ekf
RANGE s_inf, q_inf, n_inf
RANGE tau_s, tau_q, tau_n
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
: channel conductances
gkbar = 0.001324 (mho/cm2)
gl = 0.0001716 (mho/cm2)
gq = 0.003102 (mho/cm2)
gkf = 0.02737 (mho/cm2)
: reversal potentials
ek = -90.0 (mV)
el = -90.0 (mV)
eq = -54.9 (mV)
ekf = -90.0 (mV)
: read in from .hoc file
celsius (degC)
dt (ms)
v (mV)
vtraub=-80
: parameters determining rate constants
: slow K+
asA = 0.3
asB = -27
asC = -5
bsA = 0.03
bsB = 10
bsC = -1
: HCN
aqA = .00522
aqB = -94.2
aqC = -12.2
bqA = .00522
bqB = -94.2
bqC = -12.2
: fast K+
anA = 0.0462
anB = -83.2
anC = 1.1
bnA = 0.0824
bnB = -66
bnC = 10.5
}
STATE {
s q n
}
ASSIGNED {
ik (mA/cm2)
il (mA/cm2)
iq (mA/cm2)
ikf (mA/cm2)
s_inf
q_inf
n_inf
tau_s
tau_q
tau_n
q10_1
q10_2
q10_3
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gkbar * s * (v - ek)
il = gl * (v - el)
iq = gq * q * (v-eq)
ikf = gkf * n*n*n*n* (v-ekf)
}
DERIVATIVE states { : exact Hodgkin-Huxley equations
evaluate_fct(v)
s' = (s_inf - s) / tau_s
q' = (q_inf - q) / tau_q
n' = (n_inf - n) / tau_n
}
UNITSOFF
INITIAL {
:
: Q10 adjustment
: Temperature dependence
:
q10_1 = 2.2 ^ ((celsius-20)/ 10 )
q10_2 = 2.9 ^ ((celsius-20)/ 10 )
q10_3 = 3.0 ^ ((celsius-36)/ 10 )
evaluate_fct(v)
s = s_inf
q = q_inf
n = n_inf
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2
v2 = v - vtraub : convert to traub convention
: slow K+
a = q10_3*asA / (Exp((v2+asB)/asC) + 1)
b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)
tau_s = 1 / (a + b)
s_inf = a / (a + b)
: HCN
a = q10_3*aqA * (Exp((v-aqB)/aqC))
b = q10_3*bqA / (Exp((v-bqB)/bqC))
tau_q = 1 / (a + b)
q_inf = a / (a + b)
: fast K+
a = q10_3*vtrapNA(v)
b = q10_3*vtrapNB(v)
tau_n = 1 / (a + b)
n_inf = a / (a + b)
}
: vtrap functions to prevent discontinuity
FUNCTION vtrapNA(x){
if(fabs((anB - x)/anC) < 1e-6){
vtrapNA = anA*anC
}else{
vtrapNA = anA*(v-anB)/(1-Exp((anB-v)/anC))
}
}
FUNCTION vtrapNB(x){
if(fabs((x - bnB)/bnC) < 1e-6){
vtrapNB = bnA*bnC
}else{
vtrapNB = bnA*(bnB-v)/(1-Exp((v-bnB)/bnC))
}
}
FUNCTION Exp(x) {
if (x < -100) {
Exp = 0
}else{
Exp = exp(x)
}
}
UNITSON