/* Created by Language version: 7.5.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__gaines_sensory_flut
#define _nrn_initial _nrn_initial__gaines_sensory_flut
#define nrn_cur _nrn_cur__gaines_sensory_flut
#define _nrn_current _nrn_current__gaines_sensory_flut
#define nrn_jacob _nrn_jacob__gaines_sensory_flut
#define nrn_state _nrn_state__gaines_sensory_flut
#define _net_receive _net_receive__gaines_sensory_flut
#define evaluate_fct evaluate_fct__gaines_sensory_flut
#define states states__gaines_sensory_flut
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gkbar _p[0]
#define gl _p[1]
#define gq _p[2]
#define gkf _p[3]
#define ek _p[4]
#define el _p[5]
#define eq _p[6]
#define ekf _p[7]
#define ik _p[8]
#define il _p[9]
#define iq _p[10]
#define ikf _p[11]
#define s_inf _p[12]
#define q_inf _p[13]
#define n_inf _p[14]
#define tau_s _p[15]
#define tau_q _p[16]
#define tau_n _p[17]
#define s _p[18]
#define q _p[19]
#define n _p[20]
#define Ds _p[21]
#define Dq _p[22]
#define Dn _p[23]
#define q10_1 _p[24]
#define q10_2 _p[25]
#define q10_3 _p[26]
#define v _p[27]
#define _g _p[28]
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_Exp(void);
static void _hoc_evaluate_fct(void);
static void _hoc_vtrapNB(void);
static void _hoc_vtrapNA(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_gaines_sensory_flut", _hoc_setdata,
"Exp_gaines_sensory_flut", _hoc_Exp,
"evaluate_fct_gaines_sensory_flut", _hoc_evaluate_fct,
"vtrapNB_gaines_sensory_flut", _hoc_vtrapNB,
"vtrapNA_gaines_sensory_flut", _hoc_vtrapNA,
0, 0
};
#define Exp Exp_gaines_sensory_flut
#define vtrapNB vtrapNB_gaines_sensory_flut
#define vtrapNA vtrapNA_gaines_sensory_flut
extern double Exp( _threadargsprotocomma_ double );
extern double vtrapNB( _threadargsprotocomma_ double );
extern double vtrapNA( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define anC anC_gaines_sensory_flut
double anC = 1.1;
#define anB anB_gaines_sensory_flut
double anB = -83.2;
#define anA anA_gaines_sensory_flut
double anA = 0.0462;
#define aqC aqC_gaines_sensory_flut
double aqC = -12.2;
#define aqB aqB_gaines_sensory_flut
double aqB = -94.2;
#define aqA aqA_gaines_sensory_flut
double aqA = 0.00522;
#define asC asC_gaines_sensory_flut
double asC = -5;
#define asB asB_gaines_sensory_flut
double asB = -27;
#define asA asA_gaines_sensory_flut
double asA = 0.3;
#define bnC bnC_gaines_sensory_flut
double bnC = 10.5;
#define bnB bnB_gaines_sensory_flut
double bnB = -66;
#define bnA bnA_gaines_sensory_flut
double bnA = 0.0824;
#define bqC bqC_gaines_sensory_flut
double bqC = -12.2;
#define bqB bqB_gaines_sensory_flut
double bqB = -94.2;
#define bqA bqA_gaines_sensory_flut
double bqA = 0.00522;
#define bsC bsC_gaines_sensory_flut
double bsC = -1;
#define bsB bsB_gaines_sensory_flut
double bsB = 10;
#define bsA bsA_gaines_sensory_flut
double bsA = 0.03;
#define vtraub vtraub_gaines_sensory_flut
double vtraub = -80;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gkbar_gaines_sensory_flut", "mho/cm2",
"gl_gaines_sensory_flut", "mho/cm2",
"gq_gaines_sensory_flut", "mho/cm2",
"gkf_gaines_sensory_flut", "mho/cm2",
"ek_gaines_sensory_flut", "mV",
"el_gaines_sensory_flut", "mV",
"eq_gaines_sensory_flut", "mV",
"ekf_gaines_sensory_flut", "mV",
"ik_gaines_sensory_flut", "mA/cm2",
"il_gaines_sensory_flut", "mA/cm2",
"iq_gaines_sensory_flut", "mA/cm2",
"ikf_gaines_sensory_flut", "mA/cm2",
0,0
};
static double delta_t = 1;
static double n0 = 0;
static double q0 = 0;
static double s0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vtraub_gaines_sensory_flut", &vtraub_gaines_sensory_flut,
"asA_gaines_sensory_flut", &asA_gaines_sensory_flut,
"asB_gaines_sensory_flut", &asB_gaines_sensory_flut,
"asC_gaines_sensory_flut", &asC_gaines_sensory_flut,
"bsA_gaines_sensory_flut", &bsA_gaines_sensory_flut,
"bsB_gaines_sensory_flut", &bsB_gaines_sensory_flut,
"bsC_gaines_sensory_flut", &bsC_gaines_sensory_flut,
"aqA_gaines_sensory_flut", &aqA_gaines_sensory_flut,
"aqB_gaines_sensory_flut", &aqB_gaines_sensory_flut,
"aqC_gaines_sensory_flut", &aqC_gaines_sensory_flut,
"bqA_gaines_sensory_flut", &bqA_gaines_sensory_flut,
"bqB_gaines_sensory_flut", &bqB_gaines_sensory_flut,
"bqC_gaines_sensory_flut", &bqC_gaines_sensory_flut,
"anA_gaines_sensory_flut", &anA_gaines_sensory_flut,
"anB_gaines_sensory_flut", &anB_gaines_sensory_flut,
"anC_gaines_sensory_flut", &anC_gaines_sensory_flut,
"bnA_gaines_sensory_flut", &bnA_gaines_sensory_flut,
"bnB_gaines_sensory_flut", &bnB_gaines_sensory_flut,
"bnC_gaines_sensory_flut", &bnC_gaines_sensory_flut,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[0]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.5.0",
"gaines_sensory_flut",
"gkbar_gaines_sensory_flut",
"gl_gaines_sensory_flut",
"gq_gaines_sensory_flut",
"gkf_gaines_sensory_flut",
"ek_gaines_sensory_flut",
"el_gaines_sensory_flut",
"eq_gaines_sensory_flut",
"ekf_gaines_sensory_flut",
0,
"ik_gaines_sensory_flut",
"il_gaines_sensory_flut",
"iq_gaines_sensory_flut",
"ikf_gaines_sensory_flut",
"s_inf_gaines_sensory_flut",
"q_inf_gaines_sensory_flut",
"n_inf_gaines_sensory_flut",
"tau_s_gaines_sensory_flut",
"tau_q_gaines_sensory_flut",
"tau_n_gaines_sensory_flut",
0,
"s_gaines_sensory_flut",
"q_gaines_sensory_flut",
"n_gaines_sensory_flut",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 29, _prop);
/*initialize range parameters*/
gkbar = 0.001324;
gl = 0.0001716;
gq = 0.003102;
gkf = 0.02737;
ek = -90;
el = -90;
eq = -54.9;
ekf = -90;
_prop->param = _p;
_prop->param_size = 29;
_ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _gaines_sensory_flut_reg() {
int _vectorized = 1;
_initlists();
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
hoc_register_prop_size(_mechtype, 29, 1);
hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 gaines_sensory_flut /home/miguel/Desktop/Workbench/work/phd/JA1_results/stimulation_scenario002_nerve_withaxonmodels/monophasic/current_500nA/noEC/x86_64/gaines_sensory_flut.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Sensory Axon Flut channels";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[3], _dlist1[3];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v ) ;
Ds = ( s_inf - s ) / tau_s ;
Dq = ( q_inf - q ) / tau_q ;
Dn = ( n_inf - n ) / tau_n ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v ) ;
Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ;
Dq = Dq / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_q )) ;
Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_n )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v ) ;
s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ;
q = q + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_q)))*(- ( ( ( q_inf ) ) / tau_q ) / ( ( ( ( - 1.0 ) ) ) / tau_q ) - q) ;
n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_n)))*(- ( ( ( n_inf ) ) / tau_n ) / ( ( ( ( - 1.0 ) ) ) / tau_n ) - n) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv ) {
double _la , _lb , _lv2 ;
_lv2 = _lv - vtraub ;
_la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ;
_lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ;
tau_s = 1.0 / ( _la + _lb ) ;
s_inf = _la / ( _la + _lb ) ;
_la = q10_3 * aqA * ( Exp ( _threadargscomma_ ( _lv - aqB ) / aqC ) ) ;
_lb = q10_3 * bqA / ( Exp ( _threadargscomma_ ( _lv - bqB ) / bqC ) ) ;
tau_q = 1.0 / ( _la + _lb ) ;
q_inf = _la / ( _la + _lb ) ;
_la = q10_3 * vtrapNA ( _threadargscomma_ _lv ) ;
_lb = q10_3 * vtrapNB ( _threadargscomma_ _lv ) ;
tau_n = 1.0 / ( _la + _lb ) ;
n_inf = _la / ( _la + _lb ) ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrapNA ( _threadargsprotocomma_ double _lx ) {
double _lvtrapNA;
if ( fabs ( ( anB - _lx ) / anC ) < 1e-6 ) {
_lvtrapNA = anA * anC ;
}
else {
_lvtrapNA = anA * ( v - anB ) / ( 1.0 - Exp ( _threadargscomma_ ( anB - v ) / anC ) ) ;
}
return _lvtrapNA;
}
static void _hoc_vtrapNA(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrapNA ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrapNB ( _threadargsprotocomma_ double _lx ) {
double _lvtrapNB;
if ( fabs ( ( _lx - bnB ) / bnC ) < 1e-6 ) {
_lvtrapNB = bnA * bnC ;
}
else {
_lvtrapNB = bnA * ( bnB - v ) / ( 1.0 - Exp ( _threadargscomma_ ( v - bnB ) / bnC ) ) ;
}
return _lvtrapNB;
}
static void _hoc_vtrapNB(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrapNB ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double Exp ( _threadargsprotocomma_ double _lx ) {
double _lExp;
if ( _lx < - 100.0 ) {
_lExp = 0.0 ;
}
else {
_lExp = exp ( _lx ) ;
}
return _lExp;
}
static void _hoc_Exp(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 3;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
n = n0;
q = q0;
s = s0;
{
q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ;
evaluate_fct ( _threadargscomma_ v ) ;
s = s_inf ;
q = q_inf ;
n = n_inf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
ik = gkbar * s * ( v - ek ) ;
il = gl * ( v - el ) ;
iq = gq * q * ( v - eq ) ;
ikf = gkf * n * n * n * n * ( v - ekf ) ;
}
_current += ik;
_current += il;
_current += iq;
_current += ikf;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ states(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(s) - _p; _dlist1[0] = &(Ds) - _p;
_slist1[1] = &(q) - _p; _dlist1[1] = &(Dq) - _p;
_slist1[2] = &(n) - _p; _dlist1[2] = &(Dn) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif