"""
Compare the AP trajectories of two simulations: SNOEC vs SEC.
Bundle 1.
"""
import numpy as np
from collections import OrderedDict
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import scipy.signal as scs
import zipfile
import json
import csv
import os
# Time
dt = 0.005
# Cwd
cwd = os.getcwd()
# Items
cwd_items = os.listdir(cwd)
# List zip files
zipflist = [
"bundle_1_noEC.zip",
"bundle_1_nominalEC.zip"
]
# Datasets where to store all data
datasets = OrderedDict()
# Method to select the maxima
method = "AP peaks"
method = "15 mV"
# Load style file
plt.style.use('./PaperFig_1textwidth_v3.mplstyle')
# Figure
fig = plt.figure()
grid = AxesGrid(fig, 111,
nrows_ncols=(1, len(zipflist)),
direction="row",
axes_pad=0.1,
add_all=True,
label_mode="L",
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="5%",
cbar_pad=0.05,
aspect=False
)
# Arrange the figure
grid[0].set_ylabel("z (cm)")
# Select the titles
titles = {
zipflist[0].replace(".zip", ""): "SNOEC",
zipflist[1].replace(".zip", ""): "SEC",
}
# Iterate over zip files
for iz, zf in enumerate(zipflist):
# Name of the dataset
zname = zf.replace(".zip", "")
# Dictionary to store data from this dataset
datasets[zname] = {}
# Create a directory for it if it doesn't exist
isincwd = zname in cwd_items
if not isincwd:
# Create the directory
os.mkdir(zname)
# Reference the folder
zfolder = os.path.join(cwd, zname)
# Extract everything in it
zip_ref = zipfile.ZipFile(zf, 'r')
zip_ref.extractall(zfolder)
zip_ref.close()
# Reference the folder
zfolder = os.path.join(cwd, zname)
# Axons' activity
# Results folder
results_folder = os.path.join(cwd, zfolder, "data/results")
print(results_folder)
# List all the items in the results folder
items = sorted(os.listdir(results_folder))
# Select the csv files
items = [item for item in items if ".csv" in item]
# Select the axon recording files
items = [item for item in items if item[:4] == "Axon"]
# Flags indicating which axons did fire and which not
hasAP = []
# Voltage data
data = {}
# Geometrical properties
xx_ = []
yy_ = []
rr_ = []
# z-axis anatomy
# Nodes of Ranvier
zprofile_RN = {}
# Diamters
diameters = OrderedDict()
# Minima and maxima for the plot limits
tmin = 0.
tmax = -1e99
zmin = 1e99
zmax = -1e99
# Iterate over the files and read them
i = 0
for filename in items:
data[i] = {}
zprofile_RN[i] = []
with open(os.path.join(results_folder, filename), "r") as f:
fr = csv.reader(f)
for row in fr:
if "NODE" in row[0]:
data[i][key].append([float(x) for x in row[1:]])
elif len(row) == 3:
xx_.append(float(row[0]))
yy_.append(float(row[1]))
rr_.append(float(row[2]))
elif len(row) == 1:
try:
data[i][key] = np.array(data[i][key])
except NameError:
# There's no key yet
pass
key = row[0]
data[i][key] = []
elif "segment positions" in row[0]:
for item in row[1:]:
try:
value = float(item)
except ValueError:
segname = item
else:
if "NODE" in segname:
zprofile_RN[i].append(value)
# Store zprofile_RN[i] as an array
zprofile_RN[i] = np.array(zprofile_RN[i])
# When the last key is read, don't forget storing it
data[i][key] = np.array(data[i][key])
del key
i += 1
trajectories = {}
for i, data_ in data.items():
axondata = data_["v"]
# Check if the maximum is an AP
if axondata.max() > 15:
# Time and position along the z-axis of the AP maxima
ptime_ = []
pzpos_ = []
# Iterate over compartments
for j, zj in enumerate(zprofile_RN[i]):
if method == "AP peaks":
# Peaks along time
peak_time_indices = argrelextrema(axondata[j], np.greater)[0]
peak_times = dt * peak_time_indices
# Select only those which are greater than 15 mV
local_maxima = axondata[j][peak_time_indices]
peak_times = peak_times[np.where(local_maxima > 15)]
elif method == "15 mV":
# First time v reaches 15 mV
tinds = np.where(axondata[j] >= 15)[0]
if len(tinds) > 0:
peak_time_indices = np.array([np.where(axondata[j] >= 15)[0].min()])
peak_times = dt * peak_time_indices
if j == 0:
print('%s; v_max: %i; number of APs: %i'%(titles[zname], axondata.max(), len(peak_times)))
else:
peak_times = []
# Add the data if there are valid peaks
if len(peak_times) > 0:
ptime_.append(peak_times)
pzpos_.append(zj)
data[i]["ptime_"] = np.array(ptime_)
data[i]["pzpos_"] = np.array(pzpos_)
# Minima and maxima
tmax = max(tmax, max(ptime_))
zmin = min(zmin, min(pzpos_))
zmax = max(zmax, max(pzpos_))
hasAP.append(True)
else:
hasAP.append(False)
# Geometrical properties to array
xx_ = np.array(xx_)
yy_ = np.array(yy_)
rr_ = np.array(rr_)
# Colors for the diameters
diameters_ = 2 * rr_
dmin = diameters_.min()
dmax = diameters_.max()
diameters_scaled = (diameters_ - dmin) / diameters_.ptp()
cmap_diams = plt.cm.gnuplot
cmap_diams = plt.cm.jet
diamcolors = [cmap_diams(x) for x in diameters_scaled]
for i, data_ in data.items():
if hasAP[i]:
ptime_ = data_["ptime_"]
pzpos_ = data_["pzpos_"]
# Select the time of the first AP in each case
times = np.array([t[0] for t in ptime_])
# Plot
grid[iz].plot(times, 1.e-4 * pzpos_, color=diamcolors[i],
markersize=1, lw=1, label="Axon %i"%i)
# Store the dictionary that will be saved in a file
datasets[zname][i] = {
'times': times,
'pzpos_': pzpos_
}
# Arrange figure
grid[iz].set_xlabel("Time (ms)")
grid[iz].set_xticks(np.arange(tmin, 3., 0.5))
grid[iz].set_xlim(tmin, tmax)
grid[iz].set_ylim(zmin * 1.e-4, zmax * 1.e-4)
grid[iz].set_title(titles[zname])
# Dummy scatters for the plots' colorbars
try:
xdummy = times.mean() * np.ones_like(diameters_)
ydummy = pzpos_.mean() * np.ones_like(diameters_)
except NameError:
xdummy = np.zeros_like(diameters_)
ydummy = np.zeros_like(diameters_)
scdummy = grid[iz].scatter(xdummy, ydummy, s=0, c=diameters_, cmap=cmap_diams, vmin=int(dmin), vmax=dmax)
# Colorbars
grid[-1].cax.colorbar(scdummy)
grid[-1].cax.axis["right"].toggle(ticklabels=True,label=True)
grid[-1].cax.set_ylabel(r"Fiber Diameter $(\rm \mu m)$")
grid[-1].cax.set_yticks(np.arange(9., 11., 0.3))
plt.draw()
plt.show()
# Store data in a json file
# Custom json encoder
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
# Write data to file
with open("fig6.json", "w") as f:
json.dump(datasets, f, indent=4, cls=NumpyEncoder)