: Calcium ion accumulation with radial and longitudinal diffusion and pump

NEURON {
  SUFFIX cdp4Nsp
  USEION ca READ cao, cai, ica WRITE cai
  RANGE ica_pmp,scale
:RANGE pump_0  
GLOBAL vrat, TotalPump
    : vrat must be GLOBAL--see INITIAL block
    : however TotalBuffer and TotalPump may be RANGE
:    	THREADSAFE
}

DEFINE Nannuli 4

UNITS {
	(mol)   = (1)
	(molar) = (1/liter)
	(mM)    = (millimolar)
	(um)    = (micron)
	(mA)    = (milliamp)
	FARADAY = (faraday)  (10000 coulomb)
	PI      = (pi)       (1)
}

PARAMETER {
:	celsius =37     (degC)
        
	:cainull =2.5e-4 (mM)
	cainull = 45e-6 (mM)
        mginull =.59    (mM)

        DCa     = .233  (um2/ms)
	Dbtc 	= 0.007 (um2/ms)
       Ddmnpe = 0.08	(um2/ms)
	
	Dcbd1   = .028  (um2/ms)
        Dcbd2   = 0     (um2/ms)
        Dpar    = .043  (um2/ms)

:	values for benzothiazole coumarin (BTC)
	BTCnull = 0	(mM)
	b1 = 5.33	(/ms mM)
	b2 = 0.08	(/ms)

:	values for caged compound DMNPE-4
	DMNPEnull = 0	(mM)
	c1 = 5.63	(/ms mM)
	c2 = 0.107e-3	(/ms)

:       values for Calbindin (2 high and 2 low affinity binding sites)

        CBnull=	.16             (mM)
        nf1   =43.5           (/ms mM)
        nf2   =3.58e-2        (/ms)
        ns1   =5.5            (/ms mM)
        ns2   =0.26e-2        (/ms)

:       values for Parvalbumin

        PVnull  = .08           (mM)
        m1    = 1.07e2        (/ms mM)
        m2    = 9.5e-4                (/ms)
        p1    = 0.8           (/ms mM)
        p2    = 2.5e-2                (/ms)

  	kpmp1    = 3e3       (/mM-ms)
  	kpmp2    = 1.75e1   (/ms)
  	kpmp3    = 7.255e1  (/ms)
  : to eliminate pump, set TotalPump to 0 in hoc
	TotalPump = 2e-14
:    TotalPump = 1e-15
	scale = 1
}

ASSIGNED {
	diam      (um)
	ica       (mA/cm2)
	ica_pmp   (mA/cm2)
:	ica_pmp_last   (mA/cm2)
	parea     (um)     : pump area per unit length
	cai       (mM)
	cao       (mM)
	mgi	(mM)	
	vrat[Nannuli]  (1) : dimensionless
                     : numeric value of vrat[i] equals the volume 
                     : of annulus i of a 1um diameter cylinder
                     : multiply by diam^2 to get volume per um length
	
}

STATE {
	: ca[0] is equivalent to cai
	: ca[] are very small, so specify absolute tolerance
	: let it be ~1.5 - 2 orders of magnitude smaller than baseline level
	ca[Nannuli]		(mM)
	mg[Nannuli]		(mM)	<1e-7>

:	BTC[Nannuli]		(mM)
:	BTC_ca[Nannuli]		(mM)

:	DMNPE[Nannuli]		(mM)
:	DMNPE_ca[Nannuli]	(mM)	

        CB[Nannuli]		(mM)
        CB_f_ca[Nannuli]	(mM)
        CB_ca_s[Nannuli]	(mM)
        CB_ca_ca[Nannuli]	(mM)

        iCB[Nannuli]		(mM)
        iCB_f_ca[Nannuli]	(mM)
        iCB_ca_s[Nannuli]	(mM)
        iCB_ca_ca[Nannuli]	(mM)

        PV[Nannuli]		(mM)
        PV_ca[Nannuli]		(mM)
        PV_mg[Nannuli]		(mM)
	
	pump			(mol/cm2) <1e-15>
	pumpca			(mol/cm2) <1e-15>
}

BREAKPOINT {
	SOLVE state METHOD sparse
:	ica_pmp_last = ica_pmp
:	ica = ica_pmp
}

LOCAL factors_done

INITIAL {
	if (factors_done == 0) {  : flag becomes 1 in the first segment
		factors_done = 1       :   all subsequent segments will have
		factors()              :   vrat = 0 unless vrat is GLOBAL
	}
	FROM i=0 TO Nannuli-1 {
		ca[i] = cainull
		mg[i] = mginull

:		BTC[i] = ssBTC()
:		BTC_ca[i] = ssBTCca()		

:		DMNPE[i] = ssDMNPE()
:		DMNPE_ca[i] = ssDMNPEca()

		CB[i] = 0.8*ssCB( kdf(), kds())   
	        CB_f_ca[i] = 0.8*ssCBfast( kdf(), kds())
       	 	CB_ca_s[i] = 0.8*ssCBslow( kdf(), kds())
        	CB_ca_ca[i] = 0.8*ssCBca( kdf(), kds())

        	iCB[i] = 0.2*ssCB( kdf(), kds())
        	iCB_f_ca[i] = 0.2*ssCBfast( kdf(), kds())
        	iCB_ca_s[i] = 0.2*ssCBslow( kdf(), kds())
        	iCB_ca_ca[i] = 0.2*ssCBca(kdf(), kds())

        	PV[i] = ssPV( kdc(), kdm())
        	PV_ca[i] = ssPVca(kdc(), kdm())
        	PV_mg[i] = ssPVmg(kdc(), kdm())

		
	}
  	parea = PI*diam
	ica = 0
	ica_pmp = 0
:	ica_pmp_last = 0
	pump = TotalPump
	pumpca = 0
}

LOCAL frat[Nannuli]  : scales the rate constants for model geometry

PROCEDURE factors() {
	LOCAL r, dr2
	r = 1/2                : starts at edge (half diam)
	dr2 = r/(Nannuli-1)/2  : full thickness of outermost annulus,
                         : half thickness of all other annuli
	vrat[0] = 0
	frat[0] = 2*r
	FROM i=0 TO Nannuli-2 {
		vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2  : interior half
		r = r - dr2
		frat[i+1] = 2*PI*r/(2*dr2)  : outer radius of annulus
                                : div by distance between centers
		r = r - dr2
    		vrat[i+1] = PI*(r+dr2/2)*2*dr2  : outer half of annulus
  	}
}

LOCAL dsq, dsqvol  : can't define local variable in KINETIC block
                   :   or use in COMPARTMENT statement

KINETIC state {
  COMPARTMENT i, diam*diam*vrat[i] {ca mg BTC BTC_ca DMNPE DMNPE_ca CB CB_f_ca CB_ca_s CB_ca_ca iCB iCB_f_ca iCB_ca_s iCB_ca_ca PV PV_ca PV_mg}
  COMPARTMENT (1e10)*parea {pump pumpca}
	:pump
	~ ca[0] + pump <-> pumpca  (kpmp1*parea*(1e10), kpmp2*parea*(1e10))
	~ pumpca <-> pump   (kpmp3*parea*(1e10), 0)
  	CONSERVE pump + pumpca = TotalPump * parea * (1e10)

	ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea	
	: all currents except pump
	: ica is Ca efflux
	~ ca[0] << (-ica/scale*PI*diam/(2*FARADAY))

	:RADIAL DIFFUSION OF ca, mg and mobile buffers

	FROM i=0 TO Nannuli-2 {
		~ ca[i] <-> ca[i+1]	(DCa*frat[i+1], DCa*frat[i+1])
		~ mg[i] <-> mg[i+1]	(DCa*frat[i+1], DCa*frat[i+1])
:		~ BTC[i] <-> BTC[i+1]	(Dbtc*frat[i+1], Dbtc*frat[i+1])
:		~ BTC_ca[i] <-> BTC_ca[i+1]	(Dbtc*frat[i+1], Dbtc*frat[i+1])
:		~ DMNPE[i] <-> DMNPE[i+1]	(Ddmnpe*frat[i+1], Ddmnpe*frat[i+1])
:		~ DMNPE_ca[i] <-> DMNPE_ca[i+1]	(Ddmnpe*frat[i+1], Ddmnpe*frat[i+1])
		~ CB[i] <-> CB[i+1]	(Dcbd1*frat[i+1], Dcbd1*frat[i+1])
		~ CB_f_ca[i] <-> CB_f_ca[i+1]	(Dcbd1*frat[i+1], Dcbd1*frat[i+1])
		~ CB_ca_s[i] <-> CB_ca_s[i+1]	(Dcbd1*frat[i+1], Dcbd1*frat[i+1])
		~ CB_ca_ca[i] <-> CB_ca_ca[i+1]	(Dcbd1*frat[i+1], Dcbd1*frat[i+1])
		~ PV[i] <-> PV[i+1]	(Dpar*frat[i+1], Dpar*frat[i+1])
		~ PV_ca[i] <-> PV_ca[i+1]	(Dpar*frat[i+1], Dpar*frat[i+1])
		~ PV_mg[i] <-> PV_mg[i+1] 	(Dpar*frat[i+1], Dpar*frat[i+1])
	}
	dsq = diam*diam
	FROM i=0 TO Nannuli-1 {
		dsqvol = dsq*vrat[i]
:		~ ca[i] + BTC[i] <-> BTC_ca[i] (b1*dsqvol, b2*dsqvol)
:		~ ca[i] + DMNPE[i] <-> DMNPE_ca[i] (c1*dsqvol, c2*dsqvol)
		:Calbindin	
		~ ca[i] + CB[i] <-> CB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
	       	~ ca[i] + CB[i] <-> CB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
        	~ ca[i] + CB_f_ca[i] <-> CB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
        	~ ca[i] + CB_ca_s[i] <-> CB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)

        	~ ca[i] + iCB[i] <-> iCB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
        	~ ca[i] + iCB[i] <-> iCB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
        	~ ca[i] + iCB_f_ca[i] <-> iCB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
        	~ ca[i] + iCB_ca_s[i] <-> iCB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)


		:Paravalbumin
        	~ ca[i] + PV[i] <-> PV_ca[i] (m1*dsqvol, m2*dsqvol)
        	~ mg[i] + PV[i] <-> PV_mg[i] (p1*dsqvol, p2*dsqvol)

	}

  	cai = ca[0]

	mgi = mg[0]
}

FUNCTION ssBTC() (mM) {
	ssBTC = BTCnull/(1+((b1/b2)*cainull))
}

FUNCTION ssBTCca() (mM) {
	ssBTCca = BTCnull/(1+(b2/(b1*cainull)))
}

FUNCTION ssDMNPE() (mM) {
	ssDMNPE = DMNPEnull/(1+((c1/c2)*cainull))
}

FUNCTION ssDMNPEca() (mM) {
	ssDMNPEca = DMNPEnull/(1+(c2/(c1*cainull)))
}

FUNCTION ssCB( kdf(), kds()) (mM) {
	ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBfast( kdf(), kds()) (mM) {
	ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBslow( kdf(), kds()) (mM) {
	ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBca(kdf(), kds()) (mM) {
	ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION kdf() (1) {
	kdf = (cainull*nf1)/nf2
}
FUNCTION kds() (1) {
	kds = (cainull*ns1)/ns2
}
FUNCTION kdc() (1) {
	kdc = (cainull*m1)/m2
}
FUNCTION kdm() (1) {
	kdm = (mginull*p1)/p2
}
FUNCTION ssPV( kdc(), kdm()) (mM) {
	ssPV = PVnull/(1+kdc()+kdm())
}
FUNCTION ssPVca( kdc(), kdm()) (mM) {
	ssPVca = (PVnull*kdc)/(1+kdc+kdm)
}
FUNCTION ssPVmg( kdc(), kdm()) (mM) {
	ssPVmg = (PVnull*kdm())/(1+kdc()+kdm())
}