: Model and parameters from Wang, Chen, Nolan and Siegelbaum, Neuron, 2002
NEURON {
SUFFIX hcn_siegelbaum
NONSPECIFIC_CURRENT i
RANGE i, ehcn, g, gbar
GLOBAL a0, b0, ah, bh, ac, bc, aa0, ba0
GLOBAL aa0, ba0, aah, bah, aac, bac
GLOBAL kon, koff, b, bf, gca, shift
RANGE ai
}
UNITS {
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
(mA) = (milliamp)
(S) = (siemens)
}
PARAMETER {
gbar = 1 (S/cm2)
ehcn = -10 (mV)
a0 = .0015 (/ms) : parameters for alpha and beta
b0 = .02 (/ms)
ah = -87.7 (mV)
bh = -51.7 (mV)
ac = -.155 (/mV)
bc = .144 (/mV)
aa0 = 0.0067 (/ms) : parameters for alphaa and betaa
ba0 = .014 (/ms)
aah = -94.2 (mV)
bah = -35.5 (mV)
aac = -.075 (/mV)
bac = .144 (/mV)
kon = 3.086 (/mM-ms) : cyclic AMP binding parameters
koff = 4.486e-05 (/ms)
b = 80
bf = 8.94
ai = 1e-05 (mM) : concentration cyclic AMP
gca = 1 : relative conductance of the bound state
shift = 0 (mV) : shift in voltage dependence
q10v = 4 : q10 value from Magee 1998
q10a = 1.5 : estimated q10 for the cAMP binding reaction
celsius (degC)
}
ASSIGNED {
v (mV)
g (S/cm2)
i (mA/cm2)
alpha (/ms)
beta (/ms)
alphaa (/ms)
betaa (/ms)
}
STATE {
c
cac
o
cao
}
INITIAL {
SOLVE kin STEADYSTATE sparse
}
BREAKPOINT {
SOLVE kin METHOD sparse
g = gbar*(o + cao*gca)
i = g*(v-ehcn)
}
KINETIC kin {
LOCAL qa
qa = q10a^((celsius-22 (degC))/10 (degC))
rates(v)
~ c <-> o (alpha, beta)
~ c <-> cac (kon*qa*ai/bf,koff*qa*b/bf)
~ o <-> cao (kon*qa*ai, koff*qa)
~ cac <-> cao (alphaa, betaa)
CONSERVE c + cac + o + cao = 1
}
PROCEDURE rates(v(mV)) {
LOCAL qv
qv = q10v^((celsius-22 (degC))/10 (degC))
if (v > -200) {
alpha = a0*qv / (1 + exp(-(v-ah-shift)*ac))
beta = b0*qv / (1 + exp(-(v-bh-shift)*bc))
alphaa = aa0*qv / (1 + exp(-(v-aah-shift)*aac))
betaa = ba0*qv / (1 + exp(-(v-bah-shift)*bac))
} else {
alpha = a0*qv / (1 + exp(-((-200)-ah-shift)*ac))
beta = b0*qv / (1 + exp(-((-200)-bh-shift)*bc))
alphaa = aa0*qv / (1 + exp(-((-200)-aah-shift)*aac))
betaa = ba0*qv / (1 + exp(-((-200)-bah-shift)*bac))
}
}