/* =========================================================== Author: Daniel Keller Institution: Ecole Polytechnique Federale de Lausanne Reference: Keller D, Babai N, Kochubey O, Han Y, Markram H, Schürmann F, et al. (2015) An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. PLoS Comput Biol 11(5): e1004253. doi:10.1371/journal.pcbi.1004253 ============================================================= */ /* ------ File contains rates that do not change ------ */ chckpnt_state =1 /* - Switch to turn all currents on/off - */ /*Diffusion rates */ D_Ca=( 2.2e-6) D_Glu=2e-6 D_Ind= 3 * 1.0/3.0 * (0.84e-6) D_EGTA=(2.20e-6) D_BAPTA=2.20e-6 D_fast= 0 D_medium=0 D_slow=0 D_parv=1e-6 D_CB= 0 * D_Ind D_OG5=1.0/3.0 * (0.84e-6) D_OG1_10xmobile= 10 * 1.0/3.0 * (0.84e-6) D_fluo_four_ff_10xmobile=10 *3* 1.0/3.0 * (0.84e-6) /*EGTA rate Nagerl et al 2000*/ EGTA_on=10e6 EGTA_off=EGTA_on * (70e-9) /*BAPTA rate Naraghi and Neher 1997*/ BAPTA_on=4e8 BAPTA_off=BAPTA_on * (220e-9) /* ------ AMPA rates --------- Rates from Jonas, Major & Sakmann, '93, J. Physiol */ AMPA_kC0C1 = 4.59e6 AMPA_kC1C0 = 4.26e3 AMPA_kC1C2 = 28.4e6 AMPA_kC2C1 = 3.26e3 AMPA_kC2O = 4.24e3 AMPA_kOC2 = 900 AMPA_kC3C4 = 1.27e6 AMPA_kC4C3 = 45.7 AMPA_kC1C3 = 2.89e3 AMPA_kC3C1 = 39.2 AMPA_kC2C4 = 172 AMPA_kC4C2 = 0.727 AMPA_kOC5 = 17.7 AMPA_kC5O = 4.0 AMPA_kC4C5 = 16.8 AMPA_kC5C4 = 190.4 /* ------- NMDA rates ------- */ /* Rates from Vargas-Caballero and Robinson J Neur 2004 */ NMDA_kC0C1 =2* 5.0e6 NMDA_kC1C0 = 5.5 NMDA_kC1C2 = 5.0e6 NMDA_kC2C1 = 2 * 5.5 NMDA_kC2O = 46.5 NMDA_kOC2 = 91.6 NMDA_kC2Ob = 48.5 NMDA_kOC2b = 287 NMDA_kC2D = 8.4 NMDA_kDC2 = 1.8 sprintf(file_str_kB,"%s%s",data_header_str,"mg_block_rate3.dat") sprintf(file_str_kU,"%s%s",data_header_str,"mg_unblock_rate3.dat") NMDA_kB = file_str_kB NMDA_kU = file_str_kU //NMDA_kB = 2000 //NMDA_kU = "../data_files/ap/mg_block_rate2.dat" //NMDA_kB = 10000 //NMDA_kU = "../data_files/ap/mg_block_rate3.dat" //NMDA_kB = 50 /* NR2B Banke and Traynelis, 2003 */ kRRA = 20e6 kRAR = 30 kRARA2 = 10e6 kRA2RA = 60 kRA2RA2d1 = 45 kRA2RA2d2 = 70 kRA2RA2f = 1557 kRA2RA2s = 89 kRA2d1RA2 = 0.5 kRA2d2RA2 = 2.8 kRA2fRA2 = 182 kRA2fRA2o = 89 kRA2sRA2 = 135 kRA2sRA2o = 1557 kRA2oRA2f = 135 kRA2oRA2s = 182 /* ------- NMDA rates ------- */ /* A model based on Popescu Robert Howe Auerbach Nature 2004 */ /*NMDA_H_CU_CM = 41e6 NMDA_H_CM_C1 = 20e6 NMDA_H_CM_CU = 58 NMDA_H_C1_CM = 115*/ NMDA_H_CU_CM = NMDA_kC0C1 NMDA_H_CM_C1 = NMDA_kC1C2 NMDA_H_CM_CU = NMDA_kC1C0 NMDA_H_C1_CM = NMDA_kC2C1 NMDA_H_C1_C2 = 93 NMDA_H_C2_C1 = 196 NMDA_H_C2_C3 = 914 NMDA_H_C3_C2 = 954 NMDA_H_C3_O1 = 6729 NMDA_H_O1_O2 = 1343 NMDA_H_O1_C3 = 321 NMDA_H_O2_O1 = 247 NMDA_M_CU_CM = 39e6 NMDA_M_CM_C1 = 19e6 NMDA_M_CM_CU = 58 NMDA_M_C1_CM = 116 /*NMDA_M_CU_CM = NMDA_kC0C1 NMDA_M_CM_C1 = NMDA_kC1C2 NMDA_M_CM_CU = NMDA_kC1C0 NMDA_M_C1_CM = NMDA_kC2C1*/ NMDA_M_C1_C2 = 150 NMDA_M_C2_C1 = 173 NMDA_M_C2_C3 = 902 NMDA_M_C3_C2 = 2412 NMDA_M_C3_O1 = 4467 NMDA_M_O1_O2 = 4630 NMDA_M_O1_C3 = 1283 NMDA_M_O2_O1 = 526 NMDA_L_CU_CM = 40e6 NMDA_L_CM_C1 = 20e6 NMDA_L_CM_CU = 60 NMDA_L_C1_CM = 120 /*NMDA_L_CU_CM = NMDA_kC0C1 NMDA_L_CM_C1 = NMDA_kC1C2 NMDA_L_CM_CU = NMDA_kC1C0 NMDA_L_C1_CM = NMDA_kC2C1*/ NMDA_L_C1_C2 = 120 NMDA_L_C2_C1 = 130 NMDA_L_C2_C3 = 600 NMDA_L_C3_C2 = 2600 NMDA_L_C3_O1 = 2500 NMDA_L_O1_O2 = 3500 NMDA_L_O1_C3 = 2200 NMDA_L_O2_O1 = 660 NMDA_L_C1_D = 20 NMDA_L_D_C1 = 1 /*NMDA_GENERATE_CA= 1.42e6 */ /*NMDA_GENERATE_CA= "../data_files/ap/nmda_IV.dat"*/sprintf(file_str,"%s%s",data_header_str,"nmda_IV.dat") NMDA_GENERATE_CA= file_str //sprintf(file_str_kB,"%s%s",data_header_str,"mg_block_rate3.dat") //sprintf(file_str_kU,"%s%s",data_header_str,"mg_unblock_rate3.dat") //defined above fot Vargas-Caballero model //NMDA_kB = file_str_kB //NMDA_kU = file_str_kU /*release sensor */ /*using rates from felmy */ b=0.25 kx01=5 * 1.19e8 kx10=8745 kx12=4 * 1.19e8 kx21=2 * 8745 * 0.25 kx23=3 * 1.19e8 kx32=2 * 8745 *b *b kx34=2 * 1.19e8 kx43=4 * 8745 * b * b *b kx45= 1.19e8 kx54=5 * 8745 * b *b *b *b kx56=6995 kx60=5 /*using rates from wolfel */ /*b=0.5 kx01=5 * 1.4e8 kx10=4000 kx12=4 * 1.4e8 kx21=2 * 4000 * b kx23=3 * 1.4e8 kx32=2 * 4000 *b *b kx34=2 * 1.4e8 kx43=4 * 4000 * b * b *b kx45= 1.4e8 kx54=5 * 4000 * b *b *b *b lplus=0.0002 f=31.3*/ /*kx06=lplus kx16=lplus * f kx26=lplus * f * f kx36=lplus * f * f * f kx46=lplus * f * f * f * f */ kx06=0 kx16=0 kx26=0 kx36=0 kx46=0 /*kx56=lplus * f * f * f * f *f kx60=5 */ chi=0 * 2.96e6 delt=0 * 130 kab= 0 * 2 * chi kbc=chi kba=delt kcb=0 * 2 * b * delt kcd=0 * 6995 /* ------- Glutamate Uptake Rates -------- */ /* Rate from Geiger et al, '99, Handbook of Exp. Pharm. */ GluT_kT1T2 = 18.0e6 GluT_kT2T1 = 180 GluT_kT2T3 = 180 GluT_kT3T1 = 25.7 /* --------- NCX Pumps Rates -------------- */ NCX_pump_for =3e8 NCX_pump_back = 300 NCX_pump_kill = 600 NCX_pump_return= 1e5 //seed 8: I_leak_NCX=NCX_pump_kill * NCX_pump_for * (100e-9)/( NCX_pump_for * (100e-9) + NCX_pump_back+ NCX_pump_kill) //I_leak_NCX=1.12 * 47.97 //works for 50 nM /* --------- PMCA Pumps Rates -------------- */ pump_for = 1.5e8*chckpnt_state pump_back =15*chckpnt_state pump_kill = 60*chckpnt_state pump_return= 1e5*chckpnt_state I_leak_PMCA=pump_kill * pump_for * (100e-9)/( pump_for * (100e-9) + pump_back+ pump_kill) //seed 4 & 5: //I_leak_PMCA=1.1 * 25 //works for 50 nm /* --------- Pumps Rates -------------- */ /* rates for SERCA Ca Pumps */ /* From Higgins et al, 2006, Biophys. J. */ k_SERCA_X1A_X2 = 1.0e8 k_SERCA_X1_X1A = k_SERCA_X1A_X2 k_SERCA_X1A_X1 = 75 k_SERCA_X2_X1A = k_SERCA_X1A_X1 k_SERCA_X2_Y2 = 0.6 k_SERCA_Y2_X2 = 1.0 k_SERCA_Y1A_Y1 = 3.5 k_SERCA_Y2_Y1A = k_SERCA_Y1A_Y1 k_SERCA_Y1A_Y2 = 1e5 k_SERCA_Y1_Y1A = k_SERCA_Y1A_Y2 k_SERCA_Y1_X1 = 0.4 k_SERCA_X1_Y1 = 1.0e-3 k_ER_leak = 0.08 //for 100 nM free Ca //k_ER_leak = 0.06 //works for 50 nM free Ca /* make a new SERCA pump */ /* Km = 260 nM */ /* same forward rate as PMCA */ /* Means et al 2006 */ k_SERCA_for = 5e8*chckpnt_state //k_SERCA_back = 95*chckpnt_state //k_SERCA_kill = 165*chckpnt_state k_SERCA_back = 15*chckpnt_state k_SERCA_kill = 120*chckpnt_state SERCA_bound_fraction = (k_SERCA_for * (100e-9)) /(k_SERCA_for * (100e-9)+k_SERCA_back+k_SERCA_kill) k_SERCA_leak= k_SERCA_kill * SERCA_bound_fraction //k_SERCA_leak=25.5/10 * 1.48 /1.04 /* ------- Calcium Green Rates ---------- */ /* after Marc Eberhard and Paul Erne 1991 */ /* Biochemical and Biophysical Research Communications */ cal_green_on = 0.79e9 cal_green_off = 178 /* ------- F5F Rates ---------- */ F5F_on = 0.57e10 F5F_off = 4560 /* ------- Magnesium Green Rates ---------- */ mg_green_on = 0.57e9 mg_green_off = 3420 /* ------- Fluo Four Rates ---------- */ /*fluo_four_on = 0.92e9 fluo_four_off = 8900*/ fluo_four_on = 0.57e9 fluo_four_off = 1.39e2 fluo_four_ff_on = 0.5e9 fluo_four_ff_off = 4050 /* ------- Oregon Green BAPTA-1/2 Rates ---------- */ OG_B_1_on = 4.5e8 OG_B_1_off = 79 OG_B_5_on = 4.5e8 OG_B_5_off = 9000 /* ------ Calmodulin Constants --------- */ cam_for_1 = 6e6 cam_back_1 = 40 cam_for_2 = 9.5e6 cam_back_2 = 40 cam_for_3 = 8e6 cam_back_3 = 600 cam_for_4 = 4.3e7 cam_back_4 = 600 /* ------- Calbindin Rates ---------- */ /*calbindin_high_on = 0.55e7 calbindin_high_off= 2.6 calbindin_medium_on = 4.35e7 calbindin_medium_off= 35.8 */ calbindin_high_on = 100 * 0.55e7 calbindin_high_off= 100 * 2.6 calbindin_medium_on = 100 * 4.35e7 calbindin_medium_off= 100 * 35.8 /* -------- CBP Rate Constants --------- */ /* w/ All with Kd = 2 uM and Fast kinetics based on BAPTA association rate */ /*fast_on = 0.6e9 fast_off = 1.2e3*/ fast_on = 1e9 fast_off = 10000 medium_on = 1e8 medium_off = 1000 slow_on = 1e8 slow_off = 1000 v_slow_on = 0.6e6 v_slow_off = 1.2 /*parvalbumin */ Mgbase=0.0003 kparvUB=4e8 kparvUM=(1e6) kparvBU=4 kparvMU=30 katpCafor=5e8 katpCaback=(45000) katpMgfor=5e8 katpMgback=(22500)