/* =========================================================== Author: Daniel Keller Institution: Ecole Polytechnique Federale de Lausanne "An exclusion zone for Ca2+ channels around docked vesicles explains release control by multiple channels at a CNS synapse" PLoS Computational Biology, 2015 ============================================================= */ /* --- contains (almost) all variables --- */ chckpnt_state = 1 currents = 1 Cabase=70e-9 D_Ca= 2.2e-6 D_Glu=2e-6 D_CB=0 n_Glu=0 * 2000 Ca_HVA_density_neck=0 * 4 Ca_HVA_density_head=0 * 4 Ca_HVA_density_dend=0 * 4 Ca_LVA_density_neck=0 Ca_LVA_density_head=0 Ca_LVA_density_dend=0 psd_diameter = 350*1e-3 /* diamter of PSD in nanometers */ psd_size = 350*1e-3 /* length of square PSD in nanometers */ AMPA_number =0 * 80 NMDA_number =0 * 10 AMPA_density = AMPA_number / (0.25*psd_diameter*psd_diameter*3.1416) NMDA_density = NMDA_number / (0.25*psd_diameter*psd_diameter*3.1416) GluT_density=1000 /*evenly distributed pumps */ NCX_pump_density =0 * 200 NCX_spine_pump_bound_fraction = 0.3 NCX_dend_pump_bound_fraction = NCX_spine_pump_bound_fraction NCX_pump_density_neck = NCX_pump_density NCX_spine_pump_bound_fraction_neck = 0.3 NCX_dend_pump_bound_fraction_neck = NCX_spine_pump_bound_fraction_neck NCX_pump_density_dendrite = NCX_pump_density ex_pump_density = 0* 800 ex_spine_pump_bound_fraction = 0.3 ex_dend_pump_bound_fraction = ex_spine_pump_bound_fraction /*ex_pump_density_neck = ex_pump_density*/ ex_pump_density_neck = 0 * 800 ex_spine_pump_bound_fraction_neck = 0.3 ex_dend_pump_bound_fraction_neck =ex_spine_pump_bound_fraction_neck ex_pump_density_dendrite =0 * 800 ex_spine_pump_bound_fraction_dendrite = 0.0 ex_dend_pump_bound_fraction_dendrite =ex_spine_pump_bound_fraction_dendrite EGTA_bound_fraction=EGTA_on * (Cabase)/(EGTA_off+EGTA_on * (Cabase)) EGTA_unbound_fraction=1-EGTA_bound_fraction BAPTA_bound_fraction=BAPTA_on * (Cabase)/(BAPTA_off+BAPTA_on * (Cabase)) BAPTA_unbound_fraction=1-BAPTA_bound_fraction concentration_to_density = 7.528e6 /* based on sheets 12.5nm apart */ conversion_to_density= 6.02e8 /*number per mole per cubic micron*/ /*bound_cbp_fraction_spine = ((50e-9) )/((fast_off/fast_on + 50e-9) ) */ bound_cbp_fraction_spine = 0.01 unbound_cbp_fraction_spine = 1 - bound_cbp_fraction_spine bound_cbp_fraction_dend = bound_cbp_fraction_spine unbound_cbp_fraction_dend = 1 - bound_cbp_fraction_dend atp_concentration = 2000e-6 bound_atp_fraction=(Cabase * katpMgback * katpCafor)/(katpCaback * katpMgback + Cabase * katpMgback * katpCafor + katpCaback * katpMgfor * Mgbase) mgbound_atp_fraction=(katpCaback * katpMgfor * Mgbase)/(katpCaback * katpMgback + Cabase * katpMgback * katpCafor + katpCaback * katpMgfor * Mgbase) unbound_atp_fraction=(katpCaback * katpMgback)/(katpCaback * katpMgback + Cabase * katpMgback * katpCafor + katpCaback * katpMgfor * Mgbase) parvalbumin_concentration = 100e-6 bound_parvalbumin_fraction=(Cabase * kparvMU * kparvUB)/(kparvBU * kparvMU + Cabase * kparvMU * kparvUB + kparvBU * kparvUM * Mgbase) mgbound_parvalbumin_fraction=(kparvBU * kparvUM * Mgbase)/(kparvBU * kparvMU + Cabase * kparvMU * kparvUB + kparvBU * kparvUM * Mgbase) unbound_parvalbumin_fraction=(kparvBU * kparvMU)/(kparvBU * kparvMU + Cabase * kparvMU * kparvUB + kparvBU * kparvUM * Mgbase) fast_sp_concentration_psd=0 * conversion_to_density fast_cbp_concentration = 0e-6 * conversion_to_density medium_cbp_concentration = 0e-6 * conversion_to_density v_slow_cbp_concentration = 00e-6 * conversion_to_density slow_cbp_concentration = 400e-6 bound_cbp_fraction = ((100e-9) )/((slow_off/slow_on + 100e-9) ) unbound_cbp_fraction = 1 - bound_cbp_fraction calbindin_concentration =0 * 45e-6 * conversion_to_density EGTA_concentration=0e-3 BAPTA_concentration=0e-3 sensor_concentration = 0e-6 * conversion_to_density bound_sensor_fraction_spine = 0.25 unbound_sensor_fraction_spine = 1 - bound_sensor_fraction_spine bound_sensor_fraction_dend = bound_sensor_fraction_spine unbound_sensor_fraction_dend = 1 - bound_sensor_fraction_dend bound_calbindin_H0M0_fraction = 52685 /99741 bound_calbindin_H1M0_fraction = 15456/99741 bound_calbindin_H2M0_fraction = 10314/99741 bound_calbindin_H0M1_fraction = 11194 /99741 bound_calbindin_H1M1_fraction = 10075/99741 bound_calbindin_H2M1_fraction = 4/99741 bound_calbindin_H0M2_fraction = 8 /99741 bound_calbindin_H1M2_fraction = 0 /99741 bound_calbindin_H2M2_fraction = 0 /99741 calmodulin_concentration_psd = 0e-6 * conversion_to_density calmodulin_concentration_head = 0e-6 * conversion_to_density bound_calmodulin_1_fraction = 0.053 leak_density = 1280 I_HVA = "hva_IV.dat" I_LVA = "lva_IV.dat" I_NMDA = "nmda_IV.dat" I_leak = 0 * 20 dt=0.5e-8 it=100e4 grid_density = 20000 freq=2000 *dt