TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
ek (mV) : must be explicitely def. in hoc
celsius (degC)
gkdrbar=.003 (mho/cm2)
vhalfn=13 (mV)
a0n=0.02 (/ms)
zetan=-3 (1)
gmn=0.7 (1)
nmax=2 (1)
q10=1
sh = 0
tau_s = 0
taun_fix = 1 (ms)
}
NEURON {
SUFFIX kdrb
USEION k READ ek WRITE ik
RANGE gkdr,gkdrbar, sh, a0n, tau_s, taun_fix
GLOBAL ninf,taun
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
ninf
gkdr
taun
}
BREAKPOINT {
SOLVE states METHOD cnexp
gkdr = gkdrbar*n
ik = gkdr*(v-ek)
}
INITIAL {
rates(v)
n=ninf
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*zetan*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*zetan*gmn*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n)/taun
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10)
a = alpn(v)
ninf = 1/(1+a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmax) {taun=nmax/qt}
if (tau_s>1) {taun = taun_fix}
}