:Reference :Colbert and Pan 2002
NEURON {
SUFFIX NaTa_t
USEION na READ ena WRITE ina
RANGE gNaTa_tbar, gNaTa_t, ina, offm, offh, slom, sloh, tauma, taumb, tauha, tauhb
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gNaTa_tbar = 0.00001 (S/cm2)
offm = -38 (mV)
offh = -66 (mV)
slom = 6.0 (mV)
sloh = 6.0 (mV)
tauma = 5.49451 (ms)
taumb = 8.06452 (ms)
tauha = 66.6667 (ms)
tauhb = 66.6667 (ms)
}
ASSIGNED {
v (mV)
ena (mV)
ina (mA/cm2)
gNaTa_t (S/cm2)
mInf
mTau
mAlpha
mBeta
hInf
hTau
hAlpha
hBeta
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
gNaTa_t = gNaTa_tbar*m*m*m*h
ina = gNaTa_t*(v-ena)
}
DERIVATIVE states {
rates()
m' = (mInf-m)/mTau
h' = (hInf-h)/hTau
}
INITIAL{
rates()
m = mInf
h = hInf
}
PROCEDURE rates(){
LOCAL qt
qt = 2.3^((34-21)/10)
UNITSOFF
if(v == offm){
v = v+0.0001
}
mAlpha = -(offm-v)/(1-(exp((offm-v)/slom)))/tauma
mBeta = (offm-v)/(1-(exp(-(offm-v)/slom)))/taumb
mTau = (1/(mAlpha + mBeta))/qt
mInf = mAlpha/(mAlpha + mBeta)
if(v == offh){
v = v + 0.0001
}
hAlpha = (offh-v)/(1-(exp(-(offh-v)/sloh)))/tauha
hBeta = -(offh-v)/(1-(exp((offh-v)/sloh)))/tauhb
hTau = (1/(hAlpha + hBeta))/qt
hInf = hAlpha/(hAlpha + hBeta)
UNITSON
}