from mpi4py import MPI
from neuron import h
import matplotlib
matplotlib.use('Agg')
import numpy
from pylab import *
import time
import scipy.io
import pickle
import sys
import mutation_stuff
import approxhaynetstuff
import mytools
import resource
def simseedburst_func(Nmc=1, tstop=10200,mutID=0,rdSeed=1,Econ=0.0004,Icon=0.001,nseg=5,rateCoeff=1.0,gNoiseCoeff=1.0,gSynCoeff=1.0,Ncells2save=1,sparsedt=1.0,Nsyns2save=1,connM=[],gToBlock=[],blockEfficiency=0.0):
rank = MPI.COMM_WORLD.Get_rank()
dt = 0.025
coeffCoeffs = [[0.25,0],[0.125,0],[0.5,0],[0.5,1.0/3],[0.5,2.0/3],[0.5,1.0],[-0.25,0],[-0.125,0],[-0.5,0]]
MT = mutation_stuff.getMT(False)
defVals = mutation_stuff.getdefvals()
keyList = defVals.keys()
for idefval in range(0,len(keyList)):
if type(defVals[keyList[idefval]]) is not list:
defVals[keyList[idefval]] = [defVals[keyList[idefval]], defVals[keyList[idefval]]] #make the dictionary values [somatic, apical]
updatedVars = ['somatic','apical','basal'] # the possible classes of segments that defVals may apply to
whichDefVal = [0,1,0] # use the defVal[0] for somatic and basal segments and defVal[1] for apical segments
unpicklefile = open('scalings_cs.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
theseCoeffsAllAll = unpickledlist[0]
filename = 'pars_withmids_combfs_final'
unpicklefile = open(filename+".sav", 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
par_names = unpickledlist[0]
par_values = unpickledlist[1]
paramdict = {}
for i in range(0,len(par_names)):
paramdict[par_names[i]] = par_values[i]
h("""
{load_file("stdlib.hoc")}
{load_file("stdrun.hoc")}
initialization_tstart = startsw()
strdef fileName
objref fileObj
fileObj = new File()
rdSeed = """+str(rdSeed)+"""
Nmc = """+str(Nmc)+"""
connectivity = 1
noisyst = 0
tstop = """+str(tstop)+"""
rcpWeightFactor = 1.5 // the factor by which reciprocal weights are stronger than unidirectional weights
pT2Tr = 0.06 //probability of reciprocating an existing connection to another L5bPC
pT2T = 0.13 //probability of a L5bPC being connected to another L5bPC
Econ = """+str(Econ)+""" //excitatory synaptic conductance
Icon = """+str(Icon)+""" //inhibitory synaptic conductance
NcontE = 5 // number of excitatory synaptic contacts per connection
NsynE = 10000 // number of excitatory synapses
NsynI = 2500 // number of inhibitory synapses
gNoiseCoeff = """+str(gNoiseCoeff)+""" // scaling of background synaptic conductances
rateE = """+str(0.72*rateCoeff)+""" // average rate of presynaptic excitatory cells
rateI = """+str(7.0*rateCoeff)+""" // average rate of presynaptic inhibitory cells
mainBifurcation = 650
{Ncells2save = """+str(Ncells2save)+"""}
sparsedt = """+str(sparsedt)+""" // recordings of [Ca], I_SK and vApical are done with low temporal resolution to save memory
{gSynCoeff = """+str(gSynCoeff)+"""}
objref tempvec
tempvec = new Vector()
{tempvec.append(Nmc)}
{Ncells2save = """+str(Ncells2save)+"""}
""")
h("""
{load_file("models/TTC.hoc")}
objref MC_TTC
objref sl //synaptic locations list
objref rds1,rds2,rds3
{rds1 = new Random(1000*rdSeed)}
{rds1.uniform(0,1)} //random for microcircuit connectivity and noisyst
objref conMat
conMat = new Matrix(Nmc,Nmc)
for(i=0;i<Nmc;i+=1){
conMat.x[i][i]=0
}
""")
h('objref cvode') #Define an object cvode
h('cvode = new CVode()') #Make cvode a time step integrator object
h('cvode.active(0)') #Set the variable time step integration on/off
h('cvode.use_fast_imem(1)') #Make i_membrane_ accessible
if len(connM) == 0:
h("""
for(i=0;i<(Nmc-2);i+=1){
for(j=(i+1);j<Nmc;j+=1){
if (connectivity){
pcon = rds1.repick()
if (pcon<pT2Tr){
conMat.x[i][j]=rcpWeightFactor*gSynCoeff
conMat.x[j][i]=rcpWeightFactor*gSynCoeff
} else {
if (pcon<(pT2Tr + 0.5*pT2T)){
conMat.x[i][j]=gSynCoeff
conMat.x[j][i]=0
} else {
if (pcon<(pT2Tr + pT2T)){
conMat.x[i][j]=0
conMat.x[j][i]=gSynCoeff
} else {
conMat.x[i][j]=0
conMat.x[j][i]=0
}
}
}
} else {
conMat.x[i][j]=0
conMat.x[j][i]=0
}
}
}
""")
else:
for i in range(0,Nmc):
for j in range(0,Nmc):
if connM[i][j]:
h("conMat.x["+str(i)+"]["+str(j)+"]="+str(gSynCoeff*connM[i][j])) # Remember that conMat.x[i][j] is connection FROM j TO i print "Connectivity OK!"
h("""
{load_file("netparmpi.hoc")}
objref epnm
epnm = new ParallelNetManager(Nmc)
{epnm.round_robin()}
strdef treename
objref NsynsE, NsynsI, preTrainList
""")
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
print \"rank = """+str(rank)+""", gid \", i, \" exists\\n\"
MC_TTC = new TTC()
epnm.register_cell(i,MC_TTC)
epnm.pc.gid2cell(i).initRand(1000*rdSeed+i)
epnm.pc.gid2cell(i).setnetworkparameters(rcpWeightFactor,Econ,Icon,NsynE,NsynI,NcontE,1.0,1.0,1.0,gNoiseCoeff)
}""")
approxhaynetstuff.setparams(paramdict,Nmc)
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
lengthA = epnm.pc.gid2cell(i).apic[0].L + epnm.pc.gid2cell(i).apic[1].L
lengthB = epnm.pc.gid2cell(i).dend.L
pA = lengthA/(lengthA + lengthB)
{NsynsE = new List()}
{NsynsI = new List()}
for i1 = 0, 2 {
{NsynsE.append(new Vector("""+str(nseg)+"""))}
{NsynsI.append(new Vector("""+str(nseg)+"""))}
}
for(i1=0;i1<(NsynE+NsynI);i1+=1){
if (epnm.pc.gid2cell(i).rd1.repick()<pA){
treename = "apic"
compInd = 1
} else {
treename = "dend"
compInd = 0
}
sl = epnm.pc.gid2cell(i).locateSites(treename,epnm.pc.gid2cell(i).rd1.repick()*epnm.pc.gid2cell(i).getLongestBranch(treename))
sitenum = int((sl.count()-1)*epnm.pc.gid2cell(i).rd1.repick())
compInd = compInd + sl.o[sitenum].x[0] // if we are at apical, and sl.o[sitenum].x[0]=1, then compInd = 2, otherwise 1 at apical, and 0 at basal
segInd = int(sl.o[sitenum].x[1]*"""+str(nseg)+""")
if (i1<NsynE) {
NsynsE.o[compInd].x[segInd] = NsynsE.o[compInd].x[segInd] + 1
} else {
NsynsI.o[compInd].x[segInd] = NsynsI.o[compInd].x[segInd] + 1
}
}
{epnm.pc.gid2cell(i).distributeSyn(NsynsE,NsynsI)}
{preTrainList = new List()}
{rds2 = new Random(1000*rdSeed+i)}//random for presynaptic trains
{rds3 = new Random(1000*rdSeed+i)}//random for presynaptic trains
{rds2.negexp(1/rateE)}
{rds3.negexp(1/rateI)}
for(compInd=0;compInd<3;compInd+=1){
for(segInd=0;segInd<"""+str(nseg)+""";segInd+=1){
{preTrainList.append(new Vector())}
pst=0 //presynaptic spike time
if(NsynsE.o[compInd].x[segInd]==0) {
print "Warning: NsynsE.o[",compInd,"].x[",segInd,"] = 0!!!!"
pst = 1e6
}
while(pst < tstop){
pst+= 1000*rds2.repick()/NsynsE.o[compInd].x[segInd]
{preTrainList.o[preTrainList.count()-1].append(pst)}
}
}
}
for(compInd=0;compInd<3;compInd+=1){
for(segInd=0;segInd<"""+str(nseg)+""";segInd+=1){
{preTrainList.append(new Vector())}
pst=0 //presynaptic spike time
if(NsynsI.o[compInd].x[segInd]==0) {
print "Warning: NsynsI.o[",compInd,"].x[",segInd,"] = 0!!!!"
pst = 1e6
}
while(pst < tstop){
pst+= 1000*rds3.repick()/NsynsI.o[compInd].x[segInd]
{preTrainList.o[preTrainList.count()-1].append(pst)}
}
}
}
{epnm.pc.gid2cell(i).setpretrains(preTrainList)}
{epnm.pc.gid2cell(i).queuePreTrains()}
//print \"distributeSyn(), setpretrains(), queuePreTrains() OK! i=\", i, \".\"
}
""")
#LOAD MUTATIONS
counter = -1
found = 0
for igene in range(0, len(MT)):
for imut in range(0, len(MT[igene])):
theseCoeffs = theseCoeffsAllAll[0][igene][imut]
nVals = len(MT[igene][imut])*[0]
thesemutvars = []
for imutvar in range(0,len(MT[igene][imut])):
thesemutvars.append(MT[igene][imut][imutvar][0])
if type(MT[igene][imut][imutvar][1]) is int or type(MT[igene][imut][imutvar][1]) is float:
MT[igene][imut][imutvar][1] = [MT[igene][imut][imutvar][1]]
nVals[imutvar] = len(MT[igene][imut][imutvar][1])
cumprodnVals = cumprod(nVals)
allmutvars = cumprodnVals[len(MT[igene][imut])-1]*[thesemutvars]
allmutvals = []
for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]):
allmutvals.append([0]*len(thesemutvars))
for iallmutval in range(0,cumprodnVals[len(MT[igene][imut])-1]):
for imutvar in range(0,len(MT[igene][imut])):
if imutvar==0:
allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][iallmutval%nVals[imutvar]]
else:
allmutvals[iallmutval][imutvar] = MT[igene][imut][imutvar][1][(iallmutval/cumprodnVals[imutvar-1])%nVals[imutvar]]
for iallmutval in range(0, len(theseCoeffs)):
if igene == 0 and imut == 0 and iallmutval == 0:
iters = [-1,0,2,6,8]
else:
iters = [0,2,6,8]
for iiter in range(0,len(iters)):
iter = iters[iiter]
counter = counter + 1
if counter == mutID:
found = 1
break
if found:
break
if found:
break
if found:
break
if not found:
print "Not found corresponding mutID, mutID = " + str(mutID)
sys.exit()
if iter >= 0:
thisCoeff = coeffCoeffs[iter][0]*theseCoeffs[iallmutval] + coeffCoeffs[iter][1]*(1.0 - 0.5*theseCoeffs[iallmutval])
else:
thisCoeff = 0
mutText = ""
for imutvar in range(0,len(MT[igene][imut])):
if imutvar > 0 and imutvar%2==0:
mutText = mutText+"\n"
mutvars = allmutvars[iallmutval][imutvar]
mutvals = allmutvals[iallmutval][imutvar]
if type(mutvars) is str:
mutvars = [mutvars]
mutText = mutText + str(mutvars) + ": "
for kmutvar in range(0,len(mutvars)):
mutvar = mutvars[kmutvar]
if mutvar.find('offm') > -1 or mutvar.find('offh') > -1 or mutvar.find('ehcn') > -1:
newVal = [x+mutvals*thisCoeff for x in defVals[mutvar]]
if mutvals >= 0 and kmutvar==0:
mutText = mutText + "+" + str(mutvals) +" mV"
elif kmutvar==0:
mutText = mutText + str(mutvals) +" mV"
else:
newVal = [x*(mutvals**thisCoeff) for x in defVals[mutvar]]
if kmutvar==0:
mutText = mutText + "*" + str(mutvals)
if kmutvar < len(mutvars)-1:
mutText = mutText + ", "
if mutvar.find('_Ih') > -1:
updateThese = [1,1,1]
elif mutvar.find('_Ca_HVA') > -1 or mutvar.find('_Ca_LVAst') > -1 or mutvar.find('_SKv3.1') > -1 or mutvar.find('_Ca_HVA') > -1 or mutvar.find('_SK_E2') > -1 or mutvar.find('_NaTa_t') > -1 or mutvar.find('_CaDynamics_E2') > -1:
updateThese = [1,1,0]
elif mutvar.find('_K_Pst') > -1 or mutvar.find('_K_Tst') > -1 or mutvar.find('_Nap_Et2') > -1:
updateThese = [1,0,0]
elif mutvar.find('_Im') > -1:
updateThese = [0,1,0]
else:
print "Error: str=" + str(mutvar)
updatedThese = [0,0,0]
for iupdated in range(0,3):
if updateThese[iupdated]:
print """forsec epnm.pc.gid2cell(i)."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}"""
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
forsec epnm.pc.gid2cell(i)."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}
}""")
print mutText
h("""
thisCa = 0.0001
for(i=0;i<Nmc;i+=1){
if (epnm.gid_exists(i)) {
thisCa = epnm.pc.gid2cell(i).soma.minCai_CaDynamics_E2
}
}
""")
thisCa = h.thisCa
myMechs = ['Ca_HVA','Ca_LVAst','Ih','Im','K_Pst','K_Tst','NaTa_t','Nap_Et2','SK_E2','SKv3_1','']
myMechToAdd = ""
for iblock in range(0,len(gToBlock)):
for iMech in range(0,len(myMechs)):
if gToBlock[iblock] in myMechs[iMech]:
break
if iMech <= 9:
if type(blockEfficiency) is list:
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
epnm.pc.gid2cell(i).soma g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" = g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" * """+str(blockEfficiency[0])+"""
forsec epnm.pc.gid2cell(i).apical { g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" = g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" * """+str(blockEfficiency[1])+""" }
}""")
print("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
epnm.pc.gid2cell(i).soma g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" = g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" * """+str(blockEfficiency[0])+"""
forsec epnm.pc.gid2cell(i).apical { g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" = g"""+str(myMechs[iMech])+"""bar_"""+str(myMechs[iMech])+""" * """+str(blockEfficiency[1])+""" }
}""")
myMechToAdd = myMechToAdd+myMechs[iMech]+'x'+str(blockEfficiency[0])+'-'+str(blockEfficiency[1])+'_'
else:
print("forall if(ismembrane(\""+str(myMechs[iMech])+"\")) { g"+str(myMechs[iMech])+"bar_"+str(myMechs[iMech])+" = g"+str(myMechs[iMech])+"bar_"+str(myMechs[iMech])+" * "+str(blockEfficiency)+" }")
h("forall if(ismembrane(\""+str(myMechs[iMech])+"\")) { g"+str(myMechs[iMech])+"bar_"+str(myMechs[iMech])+" = g"+str(myMechs[iMech])+"bar_"+str(myMechs[iMech])+" * "+str(blockEfficiency)+" }")
myMechToAdd = myMechToAdd+myMechs[iMech]+'x'+str(blockEfficiency)+'_'
else:
print "Error: No mechanism recognized"
h("""
v_init = -80
cai0_ca_ion = thisCa
dt = """+str(dt)+"""
objref syninds, conMatRows
for(i=0;i<Nmc;i+=1){
if (epnm.gid_exists(i)) {
//epnm.pc.gid2cell(i).geom_nseg()
epnm.pc.gid2cell(i).insertMCcons(conMat.getcol(i))
}
}
{syninds = new Vector()}
{conMatRows = new List()}
for(i=0;i<Nmc;i+=1){
syninds.append(2*3*"""+str(nseg)+""")
}
// appending the microcircuit connections
for(i=0;i<Nmc;i+=1){
conMatRows.append(new Vector())
for(j=0;j<Nmc;j+=1){
conMatRows.o[i].insrt(j,conMat.x[j][i])
if (conMat.x[j][i] != 0){
for(jj=0;jj<NcontE;jj+=1){
epnm.nc_append(j,i,syninds.x[i],1,0.5)
syninds.x[i] +=1
}
}
}
}
""")
h("forall nseg="+str(nseg))
h("""
objref vSomaList, tvecList, caSomaList, skSomaList, cahvaSomaList, calvaSomaList
objref natSomaList, napSomaList, ihSomaList, kv31SomaList, ktSomaList, kpSomaList, IList
objref apcvecList, apcList, netcon, nil, spikes, spikedCells
{spikes = new Vector()}
{spikedCells = new Vector()}
{apcvecList = new List()}
{apcList = new List()}
{vSomaList = new List()}
{caSomaList = new List()}
{skSomaList = new List()}
{cahvaSomaList = new List()}
{calvaSomaList = new List()}
{natSomaList = new List()}
{napSomaList = new List()}
{ihSomaList = new List()}
{kv31SomaList = new List()}
{ktSomaList = new List()}
{kpSomaList = new List()}
{IList = new List()}
{tvecList = new List()}
""")
Nsyns = numpy.array(h.syninds)-2*3*nseg
cumpNsyns = numpy.cumsum(Nsyns)/numpy.sum(Nsyns)
randVec = [rand() for x in range(0,Nsyns2save)]
if sum(Nsyns) > 0:
cellsSynRecorded = [next(i for i,x in enumerate(cumpNsyns) if x > randVec[j]) for j in range(0,Nsyns2save)]
synIndsRecorded = [int(2*3*nseg+rand()*Nsyns[i]) for i in cellsSynRecorded]
else:
cellsSynRecorded = []
synIndsRecorded = []
for i in range(0,int(h.Ncells2save)):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
{vSomaList.append(new Vector())}
{caSomaList.append(new Vector())}
{skSomaList.append(new Vector())}
{cahvaSomaList.append(new Vector())}
{calvaSomaList.append(new Vector())}
{natSomaList.append(new Vector())}
{napSomaList.append(new Vector())}
{ihSomaList.append(new Vector())}
{kv31SomaList.append(new Vector())}
{ktSomaList.append(new Vector())}
{kpSomaList.append(new Vector())}
{tvecList.append(new Vector())}
access epnm.pc.gid2cell(i).soma
{vSomaList.o[vSomaList.count()-1].record(&v(0.5),dt)}
{caSomaList.o[caSomaList.count()-1].record(&cai(0.5),sparsedt)}
{skSomaList.o[skSomaList.count()-1].record(&ik_SK_E2(0.5),sparsedt)}
{cahvaSomaList.o[skSomaList.count()-1].record(&ica_Ca_HVA(0.5),sparsedt)}
{calvaSomaList.o[skSomaList.count()-1].record(&ica_Ca_LVAst(0.5),sparsedt)}
{natSomaList.o[skSomaList.count()-1].record(&ina_NaTa_t(0.5),sparsedt)}
{napSomaList.o[skSomaList.count()-1].record(&ina_Nap_Et2(0.5),sparsedt)}
{ihSomaList.o[skSomaList.count()-1].record(&ihcn_Ih(0.5),sparsedt)}
{kv31SomaList.o[skSomaList.count()-1].record(&ik_SKv3_1(0.5),sparsedt)}
{ktSomaList.o[skSomaList.count()-1].record(&ik_K_Tst(0.5),sparsedt)}
{kpSomaList.o[skSomaList.count()-1].record(&ik_K_Pst(0.5),sparsedt)}
}
""")
indSynIndsRecorded = [ix for ix,x in enumerate(cellsSynRecorded) if x==i]
for isyn in range(0,len(indSynIndsRecorded)):
h("""
if (epnm.gid_exists(i)) {
{IList.append(new Vector())}
{IList.o[IList.count()-1].record(&epnm.pc.gid2cell(i).synlist.o["""+str(synIndsRecorded[indSynIndsRecorded[isyn]])+"""].i, sparsedt)}
}
""")
if i < Ncells2save:
h("""
if (epnm.gid_exists(i)) {
{vSomaList.append(new Vector())}
{vSomaList.o[vSomaList.count()-1].record(&v(0.5),dt)}
}
""")
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
if (epnm.gid_exists(i)) {
access epnm.pc.gid2cell(i).soma
{apcList.append(new APCount(0.5))}
{apcvecList.append(new Vector())}
apcList.o[apcList.count()-1].thresh= -40
{apcList.o[apcList.count()-1].record(apcvecList.o[apcList.count()-1])}
{netcon = new NetCon(&v(0.5), nil)}
netcon.threshold = -20
{netcon.record(spikes, spikedCells) }
}""")
h("""
{epnm.set_maxstep(100)}
stdinit()
if (epnm.gid_exists(0)) {
print \"\\n\"
sim_tstart = startsw()
initializationtime = (sim_tstart-initialization_tstart)/3600
print \"Initialization completed. Initialization took \", initializationtime, \" hours\\n\"
print \"Starting simulation\\n\"
print \"\\n\"
}
""")
#h("""
#{epnm.psolve(tstop)}
#
#if (epnm.gid_exists(0)) {
# simruntime = (startsw() - sim_tstart)/3600
# print \"Simulation took \", simruntime, \" hours\\n\"
#}
#""")
tstep = 0
use_ipas = False
use_icap = False
use_isyn = False
rec_current_dipole_moment = True
h("objref allseclist,memirec,memireclist")
h("allseclist = new SectionList()")
h("memireclist = new SectionList()")
h("memirec = new Vector()")
dlring = 56.0; dlringI = 110.0
pos = []; posI = []
for iring in range(0,40):
r = iring * dlring
rI = iring * dlringI
if iring==0:
NcellsThisRing=1
NcellsThisRingI=1
else:
NcellsThisRing = int(3.1416*2*r/dlring+0.5)
NcellsThisRingI = int(3.1416*2*rI/dlringI+0.5)
for icell in range(0,NcellsThisRing):
pos.append([r*cos(2*3.1416*(icell+(iring%2)*0.5)/NcellsThisRing), r*sin(2*3.1416*(icell+(iring%2)*0.5)/NcellsThisRing)])
for icell in range(0,NcellsThisRingI):
posI.append([rI*cos(2*3.1416*(icell+(iring%2)*0.5)/NcellsThisRingI), rI*sin(2*3.1416*(icell+(iring%2)*0.5)/NcellsThisRingI)])
midpointsSecs = []
midpoints = []
for i in range(0,Nmc):
h("""
i = """+str(i)+"""
found = 0
if (epnm.gid_exists(i)) {
epnm.pc.gid2cell(i).soma allseclist.append()
epnm.pc.gid2cell(i).apic[0] allseclist.append()
epnm.pc.gid2cell(i).apic[1] allseclist.append()
epnm.pc.gid2cell(i).dend allseclist.append()
found = 1
}
""")
if h.found > 0:
midpointsSecs.append([pos[i][0],0,pos[i][1]])
midpointsSecs.append([pos[i][0],paramdict['L_soma']*0.5+paramdict['L_apic[0]']*0.5,pos[i][1]]) #apic0 midpoint
midpointsSecs.append([pos[i][0],paramdict['L_soma']*0.5+paramdict['L_apic[0]']+paramdict['L_apic[1]']*0.5,pos[i][1]]) #apic1 midpoint
midpointsSecs.append([pos[i][0],-paramdict['L_soma']*0.5-paramdict['L_dend']*0.5,pos[i][1]]) #apic1 midpoint
iseg = 0
isec = 0
for sec in h.allseclist:
for seg in sec:
if iseg < nseg*4*Nmc:
if sec.name().find('soma') > -1 or sec.name().find('apic') > -1:
midpoints.append([midpointsSecs[isec][0], midpointsSecs[isec][1]-sec.L/2+sec.L*seg.x, midpointsSecs[isec][2]])
else:
midpoints.append([midpointsSecs[isec][0], midpointsSecs[isec][1]+sec.L/2-sec.L*seg.x, midpointsSecs[isec][2]])
else:
midpoints.append([midpointsSecs[isec][0], midpointsSecs[isec][1], midpointsSecs[isec][2]])
#h.memirec.record(seg._ref_i_membrane_, dt) #(not needed in NEURON version 7.5!)
iseg = iseg+1
isec = isec+1
NsegTot = iseg
imem = {'imem': numpy.zeros([NsegTot,])}
DIPOLE_MOMENT = []
dtPrint = 500
nextPrint = dtPrint
timeNow = time.time()
while h.t < tstop:
if h.t >= 0:
i = 0
totnsegs = 0
if use_isyn:
imem['isyn_e'] = 0. # need to reset these for every iteration
imem['isyn_i'] = 0. # because we sum over synapses
for sec in h.allseclist:
for seg in sec:
imem['imem'][i] = seg.i_membrane_
if use_ipas:
imem['ipas'][i] = seg.i_pas
if use_icap:
imem['icap'][i] = seg.i_cap
i += 1
if rec_current_dipole_moment:
DIPOLE_MOMENT.append(numpy.dot(imem['imem'], midpoints).tolist())
h.fadvance()
if h.t > nextPrint:
print "time="+str(h.t)+", used "+str(time.time()-timeNow)+" seconds"
nextPrint = nextPrint + dtPrint
print "Simulation OK!"
print h.tstop
#times = numpy.array(h.tvecList)
vSoma = numpy.array(h.vSomaList)
spikes = numpy.array(h.spikes)
spikedCells = numpy.array(h.spikedCells)
picklelist = [spikes,spikedCells,vSoma,DIPOLE_MOMENT]
file = open('spikes_parallel_'+myMechToAdd+str(nseg)+'_'+str(tstop)+'_'+str(mutID)+'_'+str(Econ)+'_'+str(Icon)+'_'+str(rateCoeff)+'_'+str(gNoiseCoeff)+'_'+str(gSynCoeff)+'_'+str(rdSeed)+'_'+str(rank)+'_of_'+str(Nmc)+'_withLFP.sav', 'w')
pickle.dump(picklelist,file)
file.close()
print 'Saved to spikes_parallel_'+myMechToAdd+str(nseg)+'_'+str(tstop)+'_'+str(mutID)+'_'+str(Econ)+'_'+str(Icon)+'_'+str(rateCoeff)+'_'+str(gNoiseCoeff)+'_'+str(gSynCoeff)+'_'+str(rdSeed)+'_'+str(rank)+'_of_'+str(Nmc)+'_withLFP.sav'
caSoma = numpy.array(h.caSomaList)
skSoma = numpy.array(h.skSomaList)
cahvaSoma = numpy.array(h.cahvaSomaList)
calvaSoma = numpy.array(h.calvaSomaList)
natSoma = numpy.array(h.natSomaList)
napSoma = numpy.array(h.napSomaList)
ihSoma = numpy.array(h.ihSomaList)
kv31Soma = numpy.array(h.kv31SomaList)
ktSoma = numpy.array(h.ktSomaList)
kpSoma = numpy.array(h.kpSomaList)
Is = numpy.array(h.IList)
if len(caSoma) > 0:
sparseTimes = [sparsedt*x for x in range(0,len(caSoma[0]))]
else:
sparseTimes = []
if len(vSoma) > 0:
times = [dt*x for x in range(0,len(vSoma[0]))]
if len(vSoma)==1:
spikes = mytools.spike_times(times,vSoma.T)
else:
spikeTimes = []
spikeNeurs = []
for i in range(0,len(vSoma)):
theseSpikes = mytools.spike_times(times,vSoma[i])
spikeTimes = spikeTimes + theseSpikes
spikeNeurs = spikeNeurs + [i for x in theseSpikes]
spikes = [spikeTimes, spikeNeurs]
else:
times = []
h("""
{epnm.pc.runworker()}
{epnm.pc.done()}
""")
return [times,vSoma,spikes]