from neuron import h
import matplotlib
matplotlib.use('Agg')
import numpy
from pylab import *
import mytools
import pickle
import time
import sys
import random
random.seed(1)
v0 = -80
ca0 = 0.0001
proximalpoint = 400
distalpoint = 620
BACdt = 5.0
fs = 8
xs = range(700,1150,50);
tstop = 11000.0
currCoeff = 0.9 # use the threshold current I*1.1 for inducing the first spike, and I*1.1*2 for the second spike
ITERS = 20#
PPIdts = [40,50,60,70,80,100,500]
currgs = [0.000025, 0.00005, 0.000075, 0.0001, 0.000125, 0.00015]
maxLens = [1300,1185]
import mutation_stuff
MT = mutation_stuff.getMT()
defVals = mutation_stuff.getdefvals()
defValsOrig = mutation_stuff.getdefvals()
keyList = defVals.keys()
for idefval in range(0,len(keyList)):
if type(defVals[keyList[idefval]]) is not list:
defVals[keyList[idefval]] = [defVals[keyList[idefval]], defVals[keyList[idefval]]] #make the dictionary values [somatic, apical]
defValsOrig[keyList[idefval]] = [defValsOrig[keyList[idefval]], defValsOrig[keyList[idefval]]] #make the dictionary values [somatic, apical]
updatedVars = ['somatic','apical','basal'] # the possible classes of segments that defVals may apply to
whichDefVal = [0,1,0] # use the defVal[0] for somatic and basal segments and defVal[1] for apical segments
unpicklefile = open('scalings_cs.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
theseCoeffsAllAll = unpickledlist[0]
theseMutValsAllAll = unpickledlist[2]
unpicklefile = open('thresholddistalamp300_control.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
gs_control = unpickledlist[0]
Nsyns = unpickledlist[1]
maxSynsPerSeg = unpickledlist[2]
unpicklefile = open('synlocs300.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
synlocsAll = unpickledlist[3]
gCoeffsAllAll = []
def nanint(x):
if isnan(x):
return nan
return int(x)
def nanintlist(x,mylist):
if isnan(x):
return nan
return mylist[int(x)]
maxIDtab = array([[126, 190, 294, 314, nan, 334, nan, nan, 370, nan, nan, nan, 422, 442, nan]])
IDtab = r_[(maxIDtab-1)/4] # map itercounters to counters, i.e., 1-4 -> 0, 5-8 -> 1, ..., 457-460 -> 114
unpicklefile = open('mutindexlist.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
mutinds = unpickledlist[:]
IDtab = [[nanintlist(x,mutinds) for x in y] for y in IDtab]
mutIDs = IDtab[0]
print "mutIDs="+str(mutIDs)
for icell in range(0,1):
synlocs = synlocsAll[icell]
morphology_file = "morphologies/cell"+str(icell+1)+".asc"
biophys_file = "models/L5PCbiophys3.hoc"
template_file = "models/L5PCtemplate.hoc"
theseCoeffsAll = theseCoeffsAllAll[icell]
gCoeffsAll = []
h("""
load_file("stdlib.hoc")
load_file("stdrun.hoc")
objref cvode
cvode = new CVode()
cvode.active(1)
load_file("import3d.hoc")
objref L5PC
load_file(\""""+biophys_file+"""\")
load_file(\""""+template_file+"""\")
L5PC = new L5PCtemplate(\""""+morphology_file+"""\")
objref st1
st1 = new IClamp(0.5)
L5PC.soma st1
forsec L5PC.somatic {
}
forsec L5PC.apical {
}
L5PC.distribute_channels("apic","gIhbar_Ih",2,-0.8696,3.6161,0.0,1.0*2.0870,0.0002)
L5PC.distribute_channels("apic","gCa_HVAbar_Ca_HVA",3,1.0,0.1,685.0,885.0,1.0*0.000555)
L5PC.distribute_channels("apic","gCa_LVAstbar_Ca_LVAst",3,1.0,0.01,685.0,885.0,1.0*0.0187)
objref vsoma, vdend, recSite, vdend2, isoma, cadend, cadend2, casoma
vsoma = new Vector()
casoma = new Vector()
vdend = new Vector()
cadend = new Vector()
vdend2 = new Vector()
cadend2 = new Vector()
objref sl,st2,ns,syn1,syn2,con1,isyn, tvec, syns["""+str(2*Nsyns)+"""]
isyn = new Vector()
tvec = new Vector()
sl = new List()
double siteVec[2]
sl = L5PC.locateSites("apic","""+str(distalpoint)+""")
maxdiam = 0
for(i=0;i<sl.count();i+=1){
dd1 = sl.o[i].x[1]
dd = L5PC.apic[sl.o[i].x[0]].diam(dd1)
if (dd > maxdiam) {
j = i
maxdiam = dd
}
}
siteVec[0] = sl.o[j].x[0]
siteVec[1] = sl.o[j].x[1]
print "distalpoint gCa_HVA: ", L5PC.apic[siteVec[0]].gCa_HVAbar_Ca_HVA
print "distalpoint gCa_LVA: ", L5PC.apic[siteVec[0]].gCa_LVAstbar_Ca_LVAst
access L5PC.apic[siteVec[0]]
cvode.record(&v(siteVec[1]),vdend,tvec)
cvode.record(&cai(siteVec[1]),cadend,tvec)
st2 = new IClamp(siteVec[1])
st2.amp = 0
L5PC.apic[siteVec[0]] {
st2
syn1 = new epsp(siteVec[1])
syn1.tau0 = 0.5
syn1.tau1 = 5
syn1.onset = 145 + """+str(BACdt)+"""
syn1.imax = 0
syn2 = new epsp(siteVec[1])
syn2.tau0 = 0.5
syn2.tau1 = 5
syn2.onset = 145 + """+str(BACdt)+"""
syn2.imax = 0
cvode.record(&syn1.i,isyn,tvec)
}
access L5PC.soma
cvode.record(&v(0.5),vsoma,tvec)
cvode.record(&cai(0.5),casoma,tvec)
""")
for istim in range(0,Nsyns):
h("""
siteVec[0] = """+str(synlocs[istim][0])+"""
siteVec[1] = """+str(synlocs[istim][1])+"""
access L5PC.apic[siteVec[0]]
L5PC.apic[siteVec[0]] {
syns["""+str(istim)+"""] = new AlphaSynapse(siteVec[1])
syns["""+str(istim)+"""].e = 0
syns["""+str(istim)+"""].tau = 5
syns["""+str(istim)+"""].onset = 10000 + """+str(BACdt)+"""
syns["""+str(istim+Nsyns)+"""] = new AlphaSynapse(siteVec[1])
syns["""+str(istim+Nsyns)+"""].e = 0
syns["""+str(istim+Nsyns)+"""].tau = 5
syns["""+str(istim+Nsyns)+"""].onset = 10000 + """+str(BACdt)+"""
}
""")
#extra"""
styles = ['g-','g-','g-','g-','g-','g-','g-','g-','g-']
#cols = ['#aaffaa','#aaffaa','#66ff66','#66aaaa','#00aaaa','#00aaaa']
#cols = ['#00aaaa','#00bb77','#11cc44','#11dd11','#55ee00','#99dd00']
cols = ['#666666','#012345','#aa00aa','#bbaa00','#ee6600','#ff0000', '#00aaaa','#772277','#00cc00']
col_control = '#2222ff'
#yplus = [1, 2, 3, 4, 5, 6, -1, -2, -3]
#yplus = [x+3 for x in yplus]
yplus = [0, 0, 0, 0, 0, 0, 0, 0, 0]
coeffCoeffs = [[0.25,0],[0.125,0],[0.5,0],[0.5,1.0/3],[0.5,2.0/3],[0.5,1.0],[-0.25,0],[-0.125,0],[-0.5,0]]
close("all")
f, axarr = plt.subplots(2, 2)
iters = [0, 2, 5, 6, 8, -1]
unpicklefile = open('thresholddistalamp300_cs'+str(icell)+'_comb.sav', 'r')
unpickledlist = pickle.load(unpicklefile)
unpicklefile.close()
gsThisComb = unpickledlist[1]
gCoeffsThisComb = []
for iiter in range(0,len(iters)):
iter = iters[iiter]
if iter==5:
continue
defVals = mutation_stuff.getdefvals()
keyList = defVals.keys()
for idefval in range(0,len(keyList)):
if type(defVals[keyList[idefval]]) is not list:
defVals[keyList[idefval]] = [defVals[keyList[idefval]], defVals[keyList[idefval]]] #make the dictionary values [somatic, apical]
mutText = ""
gCoeffsThisIter = []
gsThisIter = gsThisComb[iiter]
for imutID in range(0,len(mutIDs)):
if type(mutIDs[imutID]) is not list:
continue
igene = mutIDs[imutID][0]
imut = mutIDs[imutID][1]
iallmutval = mutIDs[imutID][2]
nVals = len(MT[igene][imut])*[0]
thesemutvars = []
theseCoeffs = theseCoeffsAll[igene][imut]
for imutvar in range(0,len(MT[igene][imut])):
thesemutvars.append(MT[igene][imut][imutvar][0])
if type(MT[igene][imut][imutvar][1]) is int or type(MT[igene][imut][imutvar][1]) is float:
MT[igene][imut][imutvar][1] = [MT[igene][imut][imutvar][1]]
nVals[imutvar] = len(MT[igene][imut][imutvar][1])
cumprodnVals = cumprod(nVals)
allmutvars = cumprodnVals[len(MT[igene][imut])-1]*[thesemutvars]
allmutvals = []
for iallmutvaltmp in range(0,cumprodnVals[len(MT[igene][imut])-1]):
allmutvals.append([0]*len(thesemutvars))
for iallmutvaltmp in range(0,cumprodnVals[len(MT[igene][imut])-1]):
for imutvar in range(0,len(MT[igene][imut])):
if imutvar==0:
allmutvals[iallmutvaltmp][imutvar] = MT[igene][imut][imutvar][1][iallmutvaltmp%nVals[imutvar]]
else:
allmutvals[iallmutvaltmp][imutvar] = MT[igene][imut][imutvar][1][(iallmutvaltmp/cumprodnVals[imutvar-1])%nVals[imutvar]]
if iter >= 0:
thisCoeff = coeffCoeffs[iter][0]*theseCoeffs[iallmutval] + coeffCoeffs[iter][1]*(1.0 - 0.5*theseCoeffs[iallmutval])
else:
thisCoeff = 0
for imutvar in range(0,len(MT[igene][imut])):
if imutvar > 0 and imutvar%2==0:
mutText = mutText+"\n"
mutvars = allmutvars[iallmutval][imutvar]
mutvals = allmutvals[iallmutval][imutvar]
if type(mutvars) is str:
mutvars = [mutvars]
mutText = mutText + str(mutvars) + ": "
for kmutvar in range(0,len(mutvars)):
mutvar = mutvars[kmutvar]
if mutvar.find('offm') > -1 or mutvar.find('offh') > -1 or mutvar.find('ehcn') > -1:
newVal = [x+mutvals*thisCoeff for x in defVals[mutvar]]
if mutvals >= 0 and kmutvar==0:
mutText = mutText + "+" + str(mutvals) +" mV"
elif kmutvar==0:
mutText = mutText + str(mutvals) +" mV"
else:
newVal = [x*(mutvals**thisCoeff) for x in defVals[mutvar]]
if kmutvar==0:
mutText = mutText + "*" + str(mutvals)
defVals[mutvar] = newVal[:]
if kmutvar < len(mutvars)-1:
mutText = mutText + ", "
if mutvar.find('_Ih') > -1:
updateThese = [1,1,1]
elif mutvar.find('_Ca_HVA') > -1 or mutvar.find('_Ca_LVAst') > -1 or mutvar.find('_SKv3.1') > -1 or mutvar.find('_Ca_HVA') > -1 or mutvar.find('_SK_E2') > -1 or mutvar.find('_NaTa_t') > -1 or mutvar.find('_CaDynamics_E2') > -1:
updateThese = [1,1,0]
elif mutvar.find('_K_Pst') > -1 or mutvar.find('_K_Tst') > -1 or mutvar.find('_Nap_Et2') > -1:
updateThese = [1,0,0]
elif mutvar.find('_Im') > -1:
updateThese = [0,1,0]
else:
print "Error: str=" + str(mutvar)
updatedThese = [0,0,0]
for iupdated in range(0,3):
if updateThese[iupdated]:
print """forsec L5PC."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}"""
h("""forsec L5PC."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}""")
print mutText
thisCa = h.L5PC.soma[0].minCai_CaDynamics_E2
times_all = []
Vsoma_all = []
f,axarr = subplots(len(currgs),len(PPIdts))
for iPPI in range(0,len(PPIdts)):
times_thisPPI = []
Vsoma_thisPPI = []
PPIdt = PPIdts[iPPI]
for iterI in range(0,len(currgs)):
for istim in range(0,Nsyns):
h("syns["+str(istim)+"].gmax = "+str(gsThisIter*currCoeff))
h("syns["+str(istim+Nsyns)+"].gmax = "+str(currgs[iterI]))
h("syns["+str(istim+Nsyns)+"].onset = "+str(10000+BACdt+PPIdt))
h("""
tstop = """+str(tstop)+"""
cai0_ca_ion = """+str(thisCa)+"""
v_init = """+str(v0)+"""
st1.amp = 0
st1.del = 200
st1.dur = 10
""")
h.init()
try:
h.run()
except RuntimeError:
print "Too large I!"
if iterI > 1:
nextCoeffs = [nextCoeffs[0],nextCoeffs[2],0.5*(nextCoeffs[0]+nextCoeffs[2])]
continue
times=np.array(h.tvec)
Casoma=np.array(h.casoma)
Cadend=np.array(h.cadend)
Vsoma=np.array(h.vsoma)
Vdend=np.array(h.vdend)
nSpikes_total = len(mytools.spike_times(times,Vsoma,-35,-37.5))
axarr[iterI,iPPI].text(10050,-70,"nSp="+str(nSpikes_total),fontsize=4)
mycol = col_control
if iter >= 0:
mycol = cols[iter]
axarr[iterI,iPPI].plot(times,Vsoma,color=mycol)
axarr[iterI,iPPI].set_xlim([10000,10000+PPIdt+100])
if iPPI==0:
axarr[iterI,0].set_ylabel("currg="+str(currgs[iterI]),fontsize=5)
for tick in axarr[iterI,iPPI].xaxis.get_major_ticks()+axarr[iterI,iPPI].yaxis.get_major_ticks():
tick.label.set_fontsize(3)
times_thisPPI.append(times[:])
Vsoma_thisPPI.append(Vsoma[:])
times_all.append(times_thisPPI[:])
Vsoma_all.append(Vsoma_thisPPI[:])
axarr[0,iPPI].set_title('PPI='+str(PPIdts),fontsize=5)
f.savefig("testppi300_fixed_comb_iiter"+str(iiter)+".eps")
picklelist = [times_all,Vsoma_all]
file = open('subthppitest_cs'+str(icell)+'_comb_iiter'+str(iiter)+'.sav', 'w')
pickle.dump(picklelist,file)
file.close()
for idefval in range(0,len(defVals.keys())):
thisdefval = defVals.keys()[idefval]
if thisdefval.find('_Im') > -1:
h('print "L5PC.apic[0].'+thisdefval+' = ", L5PC.apic[0].'+thisdefval+', "Default = ", '+str(defVals[thisdefval][1]))
else:
h('print "L5PC.soma[0].'+thisdefval+' = ", L5PC.soma[0].'+thisdefval+', "Default = ", '+str(defVals[thisdefval][0]))
#Restore default values:
for imutID in range(0,len(mutIDs)):
if type(mutIDs[imutID]) is not list:
continue
igene = mutIDs[imutID][0]
imut = mutIDs[imutID][1]
iallmutval = mutIDs[imutID][2]
nVals = len(MT[igene][imut])*[0]
thesemutvars = []
theseCoeffs = theseCoeffsAll[igene][imut]
for imutvar in range(0,len(MT[igene][imut])):
thesemutvars.append(MT[igene][imut][imutvar][0])
if type(MT[igene][imut][imutvar][1]) is int or type(MT[igene][imut][imutvar][1]) is float:
MT[igene][imut][imutvar][1] = [MT[igene][imut][imutvar][1]]
nVals[imutvar] = len(MT[igene][imut][imutvar][1])
cumprodnVals = cumprod(nVals)
allmutvars = cumprodnVals[len(MT[igene][imut])-1]*[thesemutvars]
for imutvar in range(0,len(MT[igene][imut])):
mutvars = allmutvars[iallmutval][imutvar]
if type(mutvars) is str:
mutvars = [mutvars]
for kmutvar in range(0,len(mutvars)):
mutvar = mutvars[kmutvar]
newVal = defVals[mutvar]
if mutvar.find('_Ih') > -1:
updateThese = [1,1,1]
elif mutvar.find('_Ca_HVA') > -1 or mutvar.find('_Ca_LVAst') > -1 or mutvar.find('_SKv3.1') > -1 or mutvar.find('_Ca_HVA') > -1 or mutvar.find('_SK_E2') > -1 or mutvar.find('_NaTa_t') > -1 or mutvar.find('_CaDynamics_E2') > -1:
updateThese = [1,1,0]
elif mutvar.find('_K_Pst') > -1 or mutvar.find('_K_Tst') > -1 or mutvar.find('_Nap_Et2') > -1:
updateThese = [1,0,0]
elif mutvar.find('_Im') > -1:
updateThese = [0,1,0]
else:
print "Error: str=" + str(mutvar)
updatedThese = [0,0,0]
for iupdated in range(0,3):
if updateThese[iupdated]:
print """forsec L5PC."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}"""
h("""forsec L5PC."""+str(updatedVars[iupdated])+""" {
"""+mutvar+""" = """+str(newVal[whichDefVal[iupdated]])+"""
}""")