#cp drawfig_ltdltpcurves_muts_all_ramakercomb.py drawfig_ltdltpcurves_muts_all.py #7.11.2022 from pylab import * import scipy.io from os.path import exists import os import mytools import calcconds from matplotlib.collections import PatchCollection import scipy.stats #boxoff: remove extra axes (top and right) from an axis def boxoff(ax): ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() #ltdltpcurve: retrieve data from completed simulations for a single variant def ltdltpcurve(blocked='GluR1,GluR1_memb,GluR2,GluR2_memb,Cax0.5,0.5,1.5,1.5,1.0', T = 100, Caflux = 100.0, Lflux = 5.0, Gluflux = 10.0, altered = '_k1x1.0', freqs = [0.5, 1.0, 2.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 22.0, 25.0, 30.0, 40.0, 50.0, 75.0, 100.0, 200.0, 300.0, 500.0]): Nstims = [int(T*x) for x in freqs] tposts = [30, 0] #min after stimulus onset condposts = [] condposts_abs = [] GluR1posts = [] GluR1S831posts = [] GluR2posts = [] addition = '' for ifreq in range(0,len(freqs)): freq = freqs[ifreq] Nstim = Nstims[ifreq] filename = addition+'nrn_tstop27000000_tol1e-06_'+blocked+altered+'_onset24040000.0_n'+str(Nstim)+'_freq'+str(freq)+'_dur3.0_flux'+str(Caflux)+'_Lflux'+str(Lflux)+'_Gluflux'+str(Gluflux)+'_AChflux'+str(Gluflux)+'_Ntrains1_trainT1000.0.mat' if ifreq == 0 and not exists(filename) and not exists(filename+'.mat') and (exists('muts/'+filename) or exists('muts/'+filename+'.mat')): #do this only once to save i/o, the same should apply to either all freqs or none addition = 'muts/' filename = 'muts/'+filename if exists(filename): print('Loading '+filename) conds, times = calcconds.calcconds_nrn(filename) minabs = [min(abs(times-(24040000+x*60*1000))) for x in tposts] its = [[it for it in range(0,len(times)) if times[it]-(24040000+tposts[ipost]*60*1000) == minabs[ipost]][0] for ipost in range(0,len(tposts))] condposts.append([conds[its[ipost]]/conds[0] for ipost in range(0,len(tposts))]) condposts_abs.append([conds[its[ipost]] for ipost in range(0,len(tposts))]) A = scipy.io.loadmat(filename) iGluR1 = [i for i in range(0,len(A['headers'])) if 'GluR1_memb' in A['headers'][i]] iGluR1S831 = [i for i in range(0,len(A['headers'])) if 'GluR1_memb' in A['headers'][i] and 'S831' in A['headers'][i]] iGluR2 = [i for i in range(0,len(A['headers'])) if 'GluR2_memb' in A['headers'][i]] GluR1s = [sum([A['DATA'][i][it] for i in iGluR1]) for it in range(0,len(times))] GluR1S831s = [sum([A['DATA'][i][it] for i in iGluR1S831]) for it in range(0,len(times))] GluR2s = [sum([A['DATA'][i][it] for i in iGluR2]) for it in range(0,len(times))] GluR1posts.append([GluR1s[its[ipost]] for ipost in range(0,len(tposts))]) GluR1S831posts.append([GluR1S831s[its[ipost]] for ipost in range(0,len(tposts))]) GluR2posts.append([GluR2s[its[ipost]] for ipost in range(0,len(tposts))]) else: print(filename+' not found') condposts.append(list(nan*ones([len(tposts),]))) condposts_abs.append(list(nan*ones([len(tposts),]))) GluR1posts.append(list(nan*ones([len(tposts),]))) GluR1S831posts.append(list(nan*ones([len(tposts),]))) GluR2posts.append(list(nan*ones([len(tposts),]))) return [condposts, condposts_abs, GluR1posts, GluR2posts, GluR1S831posts] #ltdltpcurve: retrieve data from completed simulations for a group of variants def ltdltpcurves_many(blockeds=['GluR1,GluR1_memb,GluR2,GluR2_memb,Cax0.5,0.5,1.5,1.5,1.0'], T = 100, Caflux = 100.0, Lflux = 5.0, Gluflux = 10.0, altereds = ['_k1x1.0'], freqs = [0.5, 1.0, 2.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 22.0, 25.0, 30.0, 40.0, 50.0, 75.0, 100.0, 200.0, 300.0, 500.0], epsfilename = '', givenlabels = [], givencolors = []): if len(blockeds) == 1 and len(altereds) == 1: return ltdltpcurve(blockeds[0], T, Caflux, Lflux, Gluflux, altereds[0], freqs) else: DATAS = [] print("blockeds="+str(blockeds)) labels = [] if len(blockeds) > 1 and len(altereds) == 1: for iexp in range(0,len(blockeds)): DATA = ltdltpcurve(blockeds[iexp], T, Caflux, Lflux, Gluflux, altereds[0], freqs) DATAS.append(DATA[:]) labels.append('blocked-'+str(iexp)) elif len(blockeds) == 1 and len(altereds) > 1: for iexp in range(0,len(altereds)): DATA = ltdltpcurve(blockeds[0], T, Caflux, Lflux, Gluflux, altereds[iexp], freqs) DATAS.append(DATA[:]) labels.append('altered-'+str(iexp)) elif len(blockeds) == len(altereds): for iexp in range(0,len(blockeds)): DATA = ltdltpcurve(blockeds[iexp], T, Caflux, Lflux, Gluflux, altereds[iexp], freqs) DATAS.append(DATA[:]) labels.append('blocked-'+str(iexp)) else: for iexp in range(0,len(blockeds)): for iexp2 in range(0,len(altereds)): DATA = ltdltpcurve(blockeds[iexp], T, Caflux, Lflux, Gluflux, altereds[iexp2], freqs) DATAS.append(DATA[:]) labels.append('blocked-'+str(iexp)+'_altered-'+str(iexp2)) return DATAS #Define the simulation attributes T = 100 #time of stimulation in seconds Lflux = 5.0 #flux of beta-adrenergic ligands (particles/ms) Gluflux = 10.0 #flux of glutamate for mGluR activation (particles/ms) blockeds = ['PP1','PKA','PDE4','PLA2','PKC','NCX','PP1','PKA','PDE4','PLA2','PKC','NCX','PKC','CK','Gqabg','MGluR','Calbin,CalbinC','DAGK','Gi'] blockedTitles = ['PP1','PKA','PDE4','PLA2','PKC','NCX','PP1','PKA','PDE4','PLA2','PKC','NCX','PKC','CaMKII','Gq','mGluR','Calbindin','DAGK','Gi'] toplots = [2,2,2,2,2,2,3,3,3,3,3,3,0,0,0,0,0,0,0] blockedCoeffTypes = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] # For the proteins, use blockedSets[1] (refers to blockedCoeffs[1] and blockedCoeffs[2], meaning coeffs 0.8 and 1.2; and for combinations, use blockedSets[2] (refers to blockedCoeffs[4] and blockedCoeffs[5], meaning coeffs 10 and 11)) blockedSets = [[0,3],[1,2],[4,5]] blockedCoeffs = [0.5,0.8,1.2,1.5,10,11] cols = ['#BBBBBB','#666666', '#AA0000', '#FF2222','#FF00FF','#888800'] dimcols = ['#AAAAAA','#999999', '#FF8888','FFDDDD','#FF88FF','#AAAA44'] f,axs = subplots(5,4) axarr = sum([axs[i].tolist() for i in range(0,len(axs))]+[[]]) axinsets = [] for iax in range(0,len(axarr)): for tick in axarr[iax].xaxis.get_major_ticks()+axarr[iax].yaxis.get_major_ticks(): tick.label.set_fontsize(5) for axis in ['top','bottom','left','right']: axarr[iax].spines[axis].set_linewidth(0.3) boxoff(axarr[iax]) for iax in range(0,6): axarr[iax].set_position([0.095+0.15*iax,0.8,0.15,0.15]) axinsets.append(f.add_axes([0.095+0.15*iax+0.04,0.8+0.07,0.01,0.07])) for iax in range(0,6): axarr[6+iax].set_position([0.095+0.15*iax,0.59,0.15,0.15]) axinsets.append(f.add_axes([0.095+0.15*iax+0.04,0.59+0.07,0.01,0.07])) for iax in range(0,4): axarr[12+iax].set_position([0.095+0.225*iax,0.33,0.225,0.15]) axinsets.append(f.add_axes([0.095+0.225*iax+0.06,0.33+0.07,0.02,0.1])) for iax in range(0,4): axarr[16+iax].set_position([0.095+0.225*iax,0.1,0.225,0.15]) axinsets.append(f.add_axes([0.095+0.225*iax+0.06,0.1+0.07,0.02,0.1])) for iax in range(0,len(axinsets)): for tick in axinsets[iax].xaxis.get_major_ticks()+axinsets[iax].yaxis.get_major_ticks(): tick.label.set_fontsize(5) for axis in ['top','bottom','left','right']: axinsets[iax].spines[axis].set_linewidth(0.3) axinsets[iax].set_xticks([]) boxoff(axinsets[iax]) axarr[19].set_visible(False) for iax in [0,1,2,3,4,5,6,7,8,9,10,11,19]: axinsets[iax].set_visible(False) for i in [1,2,3,4,5,7,8,9,10,11,13,14,15,17,18,19]: axarr[i].set_yticklabels([]) for i in range(0,19): points = axarr[i].get_position().get_points() f.text(points[0,0]+0.007-0.0*(i<12),points[1,1]-0.024+0.03*(i<12),chr(ord('A')+i),fontsize=8) ### Population-average simulations. Panels A-G. GluRCoeff = '0.5,0.5,1.5,1.5' myfreqs = [0.001]+[1.0*i for i in range(1,28)] Caflux = 100.0 DATAS_0_CONTROL = ltdltpcurves_many(['GluR1,GluR1_memb,GluR2,GluR2_memb,Cax'+GluRCoeff+',1.0'], T, Caflux, Lflux, Gluflux, [''], freqs = myfreqs) #DATAS_0_CONTROL[0][i][0] contains the post-30min conductance for frequency i for control synapse, and DATAS_0_CONTROL[0][i][1] contains the baseline conductance (should be the same for all frequencies since taken just before the stimulus onset) minmaxes = [] for iblocked in range(0,len(blockeds)): blockedCoeffType = blockedCoeffTypes[iblocked] blockedSet = blockedSets[blockedCoeffType] toplot = toplots[iblocked] for iicoeff in range(0,len(blockedSet)): iblockedCoeff = blockedSet[iicoeff] coeff = blockedCoeffs[iblockedCoeff] Nsamespecies = blockeds[iblocked].count(',')+1 blocked_base = 'GluR1,GluR1_memb,GluR2,GluR2_memb,'+blockeds[iblocked]+'x'+GluRCoeff+','+','.join([str(coeff) for i in range(0,Nsamespecies)]) DATAS_0 = ltdltpcurves_many([blocked_base], T, Caflux, Lflux, Gluflux, [''], freqs = myfreqs) #DATAS_0[0][i][0] contains the post-30min conductance for frequency i for the variant synapse, and DATAS_0[0][i][1] contains the baseline conductance (should be the same for all frequencies since taken just before the stimulus onset) axarr[iblocked].plot(myfreqs,[DATAS_0[toplot][i][0] for i in range(0,len(DATAS_0[0]))],'b.-', lw=0.3, ms=1.0, mew=1.0, color=cols[iblockedCoeff], label = '-20%' if iblockedCoeff==1 else '+20%' ) axinsets[iblocked].bar(-1+2*iicoeff if iblocked < len(blockeds)-1 else iicoeff,DATAS_0[1][0][1],color=cols[iblockedCoeff]) axarr[iblocked].plot(myfreqs,[DATAS_0_CONTROL[toplot][i][0] for i in range(0,len(DATAS_0_CONTROL[0]))],'b.-', lw=0.3, ms=1.0, mew=1.0, color='#000000', label = 'control') axarr[iblocked].set_xlim([0,27]) #axarr[iblocked].set_ylim([0.6,2.6]) axinsets[iblocked].bar(0 if iblocked < len(blockeds)-1 else -1,DATAS_0_CONTROL[1][0][1],color='#000000') axinsets[iblocked].set_xlim([-1.5,1.5]) axinsets[iblocked].set_ylim([0,43]) if iblocked < 6 or iblocked >= 12: axarr[iblocked].set_title(blockedTitles[iblocked],fontsize=6.5) axarr[0].set_ylabel('[GluR1]$_{\mathrm{memb}}$ (mM)',fontsize=6.5) axarr[6].set_ylabel('[GluR2]$_{\mathrm{memb}}$ (mM)',fontsize=6.5) axarr[12].set_ylabel('Rel. cond.\n(fold change)',fontsize=6.5) axarr[16].set_ylabel('Rel. cond.\n(fold change)',fontsize=6.5) #for iax in [0,4]: # axarr[iax].set_ylabel('Rel. cond. (fold change)',fontsize=6.5) for iax in [6,7,8,9,10,11,15,16,17,18]: axarr[iax].set_xlabel('Freq. (Hz)',fontsize=6.5) #handles, labels = axarr[5].get_legend_handles_labels() #leg = axarr[5].legend([handles[idx] for idx in [0,2,1]],[labels[idx] for idx in [0,2,1]],fontsize=6,frameon=False,bbox_to_anchor=(1.05,0.94)) handles, labels = axarr[6].get_legend_handles_labels() leg = axarr[6].legend([handles[idx] for idx in [0,2,1]],[labels[idx] for idx in [0,2,1]],fontsize=6,frameon=False,loc=1) #handles, labels = axarr[0].get_legend_handles_labels() #leg = axarr[0].legend([handles[idx] for idx in [0,2,1]],[labels[idx] for idx in [0,2,1]],fontsize=6,frameon=False,loc=4) #f.set_size_inches(8.27,11.69) f.savefig('fig_ltdltpcurves_mut_all_supp.eps')