TITLE CaT channel alpha-1G from McRory et al, 2001
: Reversal potential described by Nernst equation
: M.Migliore Jan 2003
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius (degC)
gbar=.008 (mho/cm2)
vhalfn=-51.73 (mV)
vhalfl=-85.4 (mV)
kn=6.53 (1)
kl=-5.4 (1)
q10=2.3
cai = 0.00665315 (mM): .00005 (mM) : initial [Ca]i = 50 nM
cao = 2 (mM) : [Ca]o = 2 mM
eca
}
NEURON {
SUFFIX cat1g
USEION ca READ eca WRITE ica
RANGE gbar, carev, ica
GLOBAL ninf,linf,taul,taun, q10
}
STATE {
n
l
}
ASSIGNED {
ica (mA/cm2) : current
carev (mV) : rev potential
ninf
linf
taul
taun
}
INITIAL {
rates(v)
n=ninf
l=linf
}
BREAKPOINT {
SOLVE states METHOD cnexp
carev = (1e3) * (R*(celsius+273.15))/(2*FARADAY) * log (cao/cai)
ica = gbar*n*l*(v-carev)
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n)/taun
l' = (linf - l)/taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-22)/10)
ninf = 1/(1 + exp(-(v-vhalfn)/kn))
linf = 1/(1 + exp(-(v-vhalfl)/kl))
taun = (0.5+0.124*exp(-v/15.8))/qt
taul = (10.4+0.0118*exp(-v/7.85))/qt
}