: bk_sncda.mod
:
: Based on the kv4 model of:
: Josh Held j-held@northwestern.edu
: 3/2003
:
: BK current model
:
: Current is defined by
: i = g * m^2 * (v-e)
:
: Edited by Tim Rumbell thrumbel@us.ibm.com
: Parameters edited to match those found in
: Kimm et al, J Neuroscience, 2015
: This is the voltage-dependent component of BK, but
: without accounting for Ca changes during the AP, so
: can be considered to have a gating 'fudge factor'
: that accounts for combined V and Ca dependence
: Recordings from SNc dopaminergic neurons
NEURON {
SUFFIX bk
USEION k READ ek WRITE ik
RANGE minf, tm, ik
RANGE gbar
GLOBAL Vhalf, taumod
GLOBAL vhm, vcm
GLOBAL vhtm, atm, Ctm, tm0
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
ek (mV)
gbar = 0.05 (mho/cm2)
Vhalf = -16 (mV)
taumod = 1
vhm = -16 (mV)
vcm = -8.5 (mV)
vhtm = -16 (mv)
atm = 10.0 (mV)
Ctm = 0.13 (mV)
tm0 = 0.87 (ms)
}
STATE {
m
}
ASSIGNED {
v (mV)
ik (mA/cm2)
minf
tm (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
: ik = gbar * m^2 * (v-ek)
: Not sure about power, so using 1 so that Vhalf and slope match Kimm 2015
ik = gbar * m * (v-ek)
}
DERIVATIVE states{
rates(v)
m' = (minf - m)/tm
}
INITIAL {
setVhalf(Vhalf)
setTauMod(taumod)
rates(v)
m = minf
}
PROCEDURE rates(v(mV)) {LOCAL q10
q10 = 3^((celsius-34)/10)
minf = 1/(1 + exp((v-vhm)/vcm))
tm = (1/q10)*(tm0 + Ctm/(1 + exp((v-vhtm)/atm)))
}
PROCEDURE setVhalf(Vhalf(mV)) {
vhm = Vhalf
vhtm = Vhalf
}
PROCEDURE setTauMod(taumod) {
tm0 = 0.87 * taumod
Ctm = 0.13 * taumod
}