COMMENT
cat_sncda.mod
T-type Calcium channel, Hodgkin-Huxley style kinetics.
Kinetics are from Poetschke et al 2015 Scientific Reports paper
on CaT in rodent SNc DA cells
Adapted from Canavier 2014 NaT channel model due to both having
fast and slow components of inactivation - According to the Poetschke 2015
paper, which provides incomplete data, the equation structure should
be similar
Added ghk for driving force
Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu
Qian...Canavier, 2014
Tim Rumbell, IBM Research, 2016, thrumbel@us.ibm.com
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX cat
USEION ca READ eca,cai,cao WRITE ica
RANGE m, h, hs, gcat, gbar, ica
EXTERNAL apc_metap, fpc_metap
GLOBAL vhm, vhh, vhhs, km, kh, khs
GLOBAL tm0, th0, ths0, vhtm, vhth, atm, ath, Ctm, Cth
RANGE minf, hinf, hsinf, mtau, htau, hstau
GLOBAL q10, tadj
GLOBAL Vhalf, taumod
: Vhalf and taumod are modifiers that can be used as external parameters, varying
: several of the interal parameters simultaneously to modulate the channel
:properties up or down within the experimentally observed range
}
PARAMETER {
gbar = 1 (cm/s) : (S/cm2)
Vhalf = -40 (mV) : voltage shift (affects ll)
taumod = 1
cai (mM)
cao (mM)
: Parameters from combination of:
: Poetschke 2015 - activation kinetics, and target for tuning of inactivation
: McRory 2001 - starting point for inactivation tuning was inactivation of alpha_1H
: alpha_1H in McRory looks like closest match to kinetic parameters in Poetschke
: Poetschke shows more expression of Cav3.2 in WT == alpha_1H (I think...)
: Q10 of 3 used to approximate 0.35 ratio for temp dependence found in Iftinca 2006
: where Tau recovery from inactivation was 184 ms @ 37C and 527 ms @ 21C
vhm = -54.5 (mV) : v 1/2 for act
km = 5 (mV) : slope for act
vhh = -64.5 (mV) : v 1/2 for inact
kh = -1.6 (mV) : slope for inact
vhhs = -64.5 (mV) : v 1/2 for inact
khs = -1.6 (mV) : slope for inact
tm0 = 3.2
th0 = 76
ths0 = 600
vhtm = -40 (mV)
vhth = -46 (mV)
atm = 4.6
ath =8.85
Ctm = 19
Cth = 43
temp = 33 (degC) : original temp
q10 = 3.0 : temperature sensitivity
v (mV)
dt (ms)
celsius (degC)
tadj = 1
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
F = 9.6485e4 (coul)
R = 8.3145 (joule/degC)
(S) = (siemens)
(mM) = (milli/liter)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ica (mA/cm2)
gca (cm/s) : (S/um2)
eca (mV)
minf hinf hsinf
mtau (ms) htau (ms) hstau (ms)
T (degC)
E (volts)
z
}
STATE { m h hs }
INITIAL {
: Assume that v has been constant for long enough to reach steady state
setVhalf(Vhalf)
setTauMod(taumod)
m = minf_cat(v)
h = hinf_cat(v)
hs = hsinf_cat(v)
tadj = tadj_ca_t()
}
BREAKPOINT {
SOLVE states METHOD cnexp
gca = gbar*m*m*m*((0.6*h)+(0.4*hs))
ica = gca * ghk(v,cai,cao) : (v - eca)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {
KTF = ((25.26 (mV) /293.15 (degC) )*(celsius + 273.15 (degC) ))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
DERIVATIVE states { :Computes state variables m, h, and hs
m' = -(m-minf_cat(v))/(tadj*taum_cat(v))
h' = -(h-hinf_cat(v))/(tadj*tauh_cat(v))
hs' = -(hs-hsinf_cat(v))/(tadj*tauhs_cat(v))
}
FUNCTION boltz(x,y,z) {
boltz = 1/(1+exp(-(x-y)/z))
}
FUNCTION minf_cat(v (mV)) (1) {
minf_cat = boltz(v,vhm,km)
}
FUNCTION taum_cat(v (mV)) (1/ms) {
taum_cat = tm0 + Ctm/(1+exp((v-vhtm)/atm))
}
FUNCTION hinf_cat(v (mV)) (1) {
hinf_cat = (boltz(v,vhh,kh))
}
FUNCTION tauh_cat(v (mV)) (1/ms) {
tauh_cat = th0 + Cth/(1+exp((v-vhth)/ath))
}
FUNCTION hsinf_cat(v (mV)) (1) {
hsinf_cat = (boltz(v,vhhs,khs))
}
FUNCTION tauhs_cat(v (mV)) (1/ms) {
tauhs_cat = ths0
}
FUNCTION tadj_ca_t() {
tadj_ca_t = 1/(q10^((celsius - temp)/10))
}
PROCEDURE setVhalf(Vhalf(mV)) {
vhm = Vhalf
vhh = Vhalf - 10
vhhs = Vhalf - 10
vhtm = Vhalf + 14.5
vhth = Vhalf + 8.5
}
PROCEDURE setTauMod(taumod) {
tm0 = 3.2 * taumod
th0 = 76 * taumod
ths0 = 600 * taumod
Ctm = 19 * taumod
Cth = 43 * taumod
}