: kv4_a_sncda.mod
:
: Josh Held j-held@northwestern.edu
: 3/2003
:
: Kv4 current (A current) model
:
: Current is defined by
: i = g * m^3 * h * (v-e)
:
: Data from 9_13_2_1
:
: Edited by Tim Rumbell, IBM Research, 2017, thrumbel@us.ibm.com
: Parameters edited to match those found in
: Amendola et al 2012 (J Neurosci)
: Recordings from SNc dopaminergic neurons
NEURON {
SUFFIX kv4_a
USEION k READ ek WRITE ik
RANGE minf, tm, hinf, th, ik, th
RANGE gbar
EXTERNAL apc_metap, fpc_metap
GLOBAL Vhalf, taumod
GLOBAL vhm, vcm
GLOBAL vhh, vch
GLOBAL vhtm, atm, Ctm, tm0
GLOBAL vhth, ath, Cth, th0
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
ek (mV)
gbar = 0.05 (S/cm2)
Vhalf = -40 (mV)
taumod = 1
vhm = -40 (mV)
vcm = -7 (mV)
vhh = -73 (mV)
vch = 4.9 (mv)
vhtm = -56.7 (mv)
atm = 6.22 (mV)
Ctm = 4.83 (mV)
tm0 = 1.029 (ms)
vhth = -68.5 (mv)
ath = 5.95 (mV)
Cth = 78.4 (mV)
th0 = 39.04 (ms)
}
STATE {
m h
}
ASSIGNED {
v (mV)
ik (mA/cm2)
minf
tm (ms)
hinf
th (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar * m^3 * h * (v-ek)
:ik = gbar * m * h * (v-ek)
}
DERIVATIVE states{
rates(v)
m' = (minf - m)/tm
h' = (hinf - h)/th
}
INITIAL {
setVhalf(Vhalf)
setTauMod(taumod)
rates(v)
m = minf
h = hinf
}
PROCEDURE rates(v(mV)) {LOCAL q10
q10 = 3^((celsius-32)/10)
minf = (1/(1 + exp((v-vhm)/vcm)))^(1/3) : cube-rooted because we want to match Amendola parameters for Vhalf and slope when we cube this gating variable due to m^3 in BREAKPOINT
hinf = 1/(1 + exp((v-vhh)/vch))
tm = (1/q10)*(tm0 + Ctm/(1 + exp((v-vhtm)/atm)))
th = (1/q10)*(th0 + Cth/(1 + exp((v-vhth)/ath)))
}
PROCEDURE setVhalf(Vhalf(mV)) {
vhm = Vhalf
vhh = Vhalf - 33
}
PROCEDURE setTauMod(taumod) {
tm0 = 1.029 * taumod
Ctm = 4.83 * taumod
th0 = 39.04 * taumod
Cth = 78.4 * taumod
}