function specification = assembleSinglePYLeakFullCxn(numCellsScale)
%ASSEMBLECORTSPEC - Construct and connect the cortex of the (Benita et al., 2012) model
%
% assembleSpecification builds a (Benita et al., 2012)-type DynaSim
% specification, including both its populations and connections from the many
% mechanism files contained in the 'models/' subdirectory.
%
% Inputs:
% 'dt': time resolution of the simulation, in ms
% 'numCellsScale': number to multiply each cell population size
% by, between 0 and 1. To run the full model, use
% 1. If one wishes to run a smaller model, since
% the default model is rather large, use a
% smaller proportion like 0.2.
%
% Outputs:
% 'specification': DynaSim specification structure for the (Benita
% et al., 2012) model.
%
% Dependencies:
% - This has only been tested on MATLAB version 2017a.
%
% References:
% - Benita, J. M., Guillamon, A., Deco, G., & Sanchez-Vives, M. V. (2012).
% Synaptic ession and slow oscillatory activity in a biophysical
% network model of the cerebral cortex. Frontiers in Computational
% Neuroscience, 6. https://doi.org/10.3389/fncom.2012.00064
%
%
% Author: Austin E. Soplata <austin.soplata@gmail.com>
% Copyright (C) 2018 Austin E. Soplata, Boston University, USA
% -------------------------------------------------------------------
%% 1. Make master equations and initialize
% -------------------------------------------------------------------
% Define equations of cell model (same for all populations)
eqns={
'dv/dt=(@current)/Cm'
'Cm = 1' % uF/cm^2
'spike_threshold = -25'
'monitor v.spikes(spike_threshold)'
'vIC = -68' % mV
'vNoiseIC = 50' % mV
'v(0) = vIC+vNoiseIC*rand(1,Npop)'
};
% Initialize DynaSim specification structure
specification=[];
% -------------------------------------------------------------------
%% 2. Assemble Cortex Model and Intracortical Connections
% -------------------------------------------------------------------
% PY cells and intercompartmental PY connections:
specification.populations(1).name='PYdr';
specification.populations(1).size=round(numCellsScale*100);
% specification.populations(1).size=round(numCellsScale*1);
specification.populations(1).equations=eqns;
specification.populations(1).mechanism_list={...
'iAppliedCurrent',...
'iLeak_PYdr_JB12',...
'iNaP_PYdr_JB12',...
'iAR_PYdr_JB12',...
'CaBuffer_PYdr_JB12',...
'iKCa_PYdr_JB12',...
'iHVA_PYdr_JB12',...
};
% Note that the soma mechanisms are somewhat sensitive to initial conditions
specification.populations(2).name='PYso';
specification.populations(2).size=round(numCellsScale*100);
% specification.populations(2).size=round(numCellsScale*1);
specification.populations(2).equations=eqns;
specification.populations(2).mechanism_list={...
'iAppliedCurrent',...
'iLeak_PYso_JB12',...
'iNa_PYso_JB12',...
'iK_PYso_JB12',...
'iA_PYso_JB12',...
'iKS_PYso_JB12',...
};
specification.connections(1).direction='PYso<-PYdr';
specification.connections(1).mechanism_list={...
'iCOM_PYso_PYdr_JB12',...
'iNaCurrs_PYso_PYdr_JB12',...
};
specification.connections(2).direction='PYdr<-PYso';
specification.connections(2).mechanism_list={...
'iCOM_PYdr_PYso_JB12',...
'iAMPA_PYdr_PYso_SignCh',...
'iNMDA_PYdr_PYso_JB12'};
% IN cells and intercompartmental IN connections:
specification.populations(3).name='IN';
specification.populations(3).size=round(numCellsScale*20);
specification.populations(3).equations=eqns;
specification.populations(3).mechanism_list={...
'iAppliedCurrent',...
'iLeak_IN_JB12',...
'iNa_IN_JB12',...
'iK_IN_JB12',...
};
% PY<->IN connections/synapses
specification.connections(3).direction='IN<-PYso';
specification.connections(3).mechanism_list={...
'iAMPA_IN_PYso_SignCh',...
'iNMDA_IN_PYso_JB12'};
specification.connections(4).direction='PYso<-IN';
specification.connections(4).mechanism_list={...
'iGABAA_PYso_IN_SignCh'};
specification.connections(5).direction='IN<-IN';
specification.connections(5).mechanism_list={...
'iGABAA_IN_IN_SignCh'};