figsdir = './figs/'
results = containers.Map()
% strong2 weakstrong sparse repeated multi
close all
%analyze='strong2';
if (strcmp(analyze,'sparse'))
bars = [];
errs = [];
bars_sp = [];
brssum = [];
local_brssum = [];
nrnssum = [];
local_nrnssum = [];
bars_ff = [];
bars_act = [];
CONDITION='sparse';
%CONDITION='Nsparse';
an_stats
brssum = brsyns;
nrnssum = nrnsyns;
both_actppre = actPpre;
both_actppost = actPpost;
both_kpre = kpre;
both_kpost = kpost;
d = mean(sumweights);
bars(1) = d(1);
bars(4) = d(2);
d = std(sumweights);
errs(1) = d(1);
errs(4) = d(2);
bars_sp(1,:) = [ eb_sp_mean(1), eb_sp_errs(1)]; % Pre
bars_sp(4,:) = [ eb_sp_mean(2), eb_sp_errs(2)]; % both
bars_ff(1,:) = [ eb_firing_mean(1), eb_firing_errs(1)]; % Pre
bars_ff(4,:) = [ eb_firing_mean(2), eb_firing_errs(2)]; % both
bars_act(1,:) = [ eb_act_mean(1), eb_act_errs(1)]; % Pre
bars_act(4,:) = [ eb_act_mean(2), eb_act_errs(2)]; % both
tr = []
for i=1:nruns
tr(1, i) = trevrolls(brws(i,:))
end
csus = csusafter;
CONDITION='sparseL';
%CONDITION='NsparseL';
an_stats
local_csus = csusafter;
local_brssum = brsyns;
local_nrnssum = nrnsyns;
local_actppre = actPpre;
local_actppost = actPpost;
local_kpre = kpre;
local_kpost = kpost;
d = mean(sumweights);
bars(3) = d(2);
d = std(sumweights);
errs(3) = d(2);
bars_sp(3,:) = [ eb_sp_mean(2), eb_sp_errs(2)]; % Post Global
bars_ff(3,:) = [ eb_firing_mean(2), eb_firing_errs(2)]; % Post Global
bars_act(3,:) = [ eb_act_mean(2), eb_act_errs(2)]; % Post Global
for i=1:nruns
tr(2, i) = trevrolls(brws(i,:))
end
CONDITION='sparseG';
%CONDITION='NsparseG';
an_stats
global_csus = csusafter;
global_brssum = brsyns;
global_nrnssum = nrnsyns;
global_actppre = actPpre;
global_actppost = actPpost;
global_kpre = kpre;
global_kpost = kpost;
d = mean(sumweights);
bars(2) = d(2);
d = std(sumweights);
errs(2) = d(2);
bars_sp(2,:) = [ eb_sp_mean(2), eb_sp_errs(2)]; % Post Global
bars_ff(2,:) = [ eb_firing_mean(2), eb_firing_errs(2)]; % Post Global
bars_act(2,:) = [ eb_act_mean(2), eb_act_errs(2)]; % Post Global
for i=1:nruns
tr(2, i) = trevrolls(brws(i,:))
end
nextplot(1,1)
barwitherr(errs, bars);
%set(h(3), 'facecolor', 'g');
set(gcf, 'Position', [0,0, 400,300])
title('Total synaptic weight')
%ylabel('Total Synaptic Weight')
%ylim([0,3000]);
set(gca, 'XTickLabel', {'Pre', 'Somatic', 'Local','S&L' })
export_fig(sprintf('%s/sparisty_sumweights.pdf', figsdir), '-transparent')
nextplot(1,1);
set(gcf, 'Position', [0,0, 400, 300])
barwitherr( bars_sp(:,2)', bars_sp(:,1)');
%bar([kpre, kpost]);
title(sprintf('Population firing sparseness'))
%ylim([0.4,0.8]);
set(gca, 'XTickLabel', {'Pre', 'Somatic', 'Local','S&L'})
export_fig(sprintf('%s/sparse_sp.pdf', figsdir), '-transparent')
ACT_CUTOFF=5;
nextplot(1,1);
set(gcf, 'Position', [0,0, 400, 300])
bars = [];
%ffs = [];
for i=1:nruns
bars(i,1) = mean(both_actppre(i,both_actppre(i,:)>ACT_CUTOFF));
bars(i,4) = mean(both_actppost(i, both_actppost(i,:)>ACT_CUTOFF));
bars(i,3) = mean(local_actppost(i, local_actppost(i,:)>ACT_CUTOFF));
bars(i,2) = mean(global_actppost(i, global_actppost(i,:)>ACT_CUTOFF));
end
cbars = [];
for i=1:nruns
cbars(i,1) = mean(both_actppre(i,both_actppre(i,:)>CUTOFF));
cbars(i,4) = mean(both_actppost(i, both_actppost(i,:)>CUTOFF));
cbars(i,3) = mean(local_actppost(i, local_actppost(i,:)>CUTOFF));
cbars(i,2) = mean(global_actppost(i, global_actppost(i,:)>CUTOFF));
end
%h = barwitherr( [std(cbars); std(bars)]', [mean(cbars); mean(bars)]');
h = barwitherr( std(cbars), mean(cbars));
title(sprintf('Avg Firing Rate (Hz)'))
%ylim([0.4,0.8]);
%set(h(2), 'facecolor', [0.7, 0.82,0.9]);
%bar([kpre, kpost]);
%ylim([0,40]);
%legend('Coding neurons', 'Active neurons')
set(gca, 'XTickLabel', {'Pre', 'Somatic', 'Local','S&L'})
export_fig(sprintf('%s/sparse_ff.pdf', figsdir), '-transparent')
ant = bars; % [anpre anpostG anpostL anpostB];
%%[p, tbl, stats] = anova1(ant)
%%[res,means] = multcompare(stats,'CType','bonferroni')
nextplot(1,1);
set(gcf, 'Position', [0,0, 400, 300])
vl = 100*sum((local_actppost>ACT_CUTOFF)')/npyrs;
vg = 100*sum((global_actppost>ACT_CUTOFF)')/npyrs;
vb = 100*sum((both_actppost>ACT_CUTOFF)')/npyrs;
vp = 100*sum((both_actppre>ACT_CUTOFF)')/npyrs;
mbars = [mean(vp), mean(vg), mean(vl), mean(vb)];
ebars = [std(vp), std(vg), std(vl), std(vb)];
bars = bars_act(1:4,1);
errs = bars_act(1:4,2);
h=barwitherr( errs, bars) ; %bars_act(1:4,2)', bars_act(1:4,1)');
%set(h(2), 'facecolor', [0.7, 0.82,0.9]);
%bar([kpre, kpost]);
title('Coding neurons (%)')
%ylim([0,40]);
%legend('Coding neurons', 'Active neurons')
set(gca, 'XTickLabel', { 'Pre', 'Somatic', 'Local','S&L'})
export_fig(sprintf('%s/sparse_act.pdf', figsdir), '-transparent')
anpre = 100*sum(global_actppre>10,2)/400;
anpost = 100*sum(global_actppost>10,2)/400;
anpostL = 100*sum(local_actppost>10,2)/400;
anpostB = 100*sum(both_actppost>10,2)/400;
ant = [anpre anpost anpostL anpostB];
%%[p, tbl, stats] = anova1(ant);
%%[res,means] = multcompare(stats,'CType','bonferroni');
nextplot(1,1)
set(gcf, 'Position', [0,0, 360, 300])
av = [];
me = [ std(global_brssum(global_brssum>0)), std(local_brssum(local_brssum>0)), std(brssum(brssum>0))]/10.;
mm = [ mean(global_brssum(global_brssum>0)), mean(local_brssum(local_brssum>0)), mean(brssum(brssum>0))];
barwitherr( me, mm);
title(('Avg potentiated synapses per branch'))
%ylim([0,5]);
ylabel('# Synapses');
set(gca, 'XTickLabel', { 'Somatic', 'Local', 'S&L'})
export_fig(sprintf('%s/sparse_syn_per_branch.pdf', figsdir), '-transparent')
sg = global_brssum(global_brssum>0);
sl= local_brssum(local_brssum>0);
sb= brssum(brssum>0);
sg = sg(1:500);
sl = sl(1:500);
sb = sb(1:500);
sall = [sg' sl' sb'];
%sall = [sb' sg'];
lab = [repmat(1,1,length(sb)) repmat(2,1,length(sg)) repmat(3,1,length(sb)) ];
%[p, tbl, stats] = kruskalwallis(sall, lab)
boxplot(sall, lab, 'Labels', {'Somatic', 'Local', 'S&L'}, 'colorgroup', lab)
ylabel('# potentiated synapses per branch')
%export_fig(sprintf('%s/BOX_BRALLOC.pdf', figsdir), '-transparent')
%return;
%%[res,means] = multcompare(stats,'CType','bonferroni')
nextplot(1,1)
set(gcf, 'Position', [0,0, 360, 300])
av = [];
me = [ std(global_nrnssum(global_nrnssum>0)), std(local_nrnssum(local_nrnssum>0)), std(nrnssum(nrnssum>0))]/10.;
mm = [ mean(global_nrnssum(global_nrnssum>0)), mean(local_nrnssum(local_nrnssum>0)), mean(nrnssum(nrnssum>0))];
h=barwitherr( me, mm);
title(('Avg potentiated synapses per neuron'))
%ylim([0.2,1.0]);
ylabel('# Synapses');
set(gca, 'XTickLabel', { 'Somatic', 'Local', 'S&L'})
export_fig(sprintf('%s/sparse_syn_per_neuron.pdf', figsdir), '-transparent')
sall = [];
sg = global_nrnssum(global_nrnssum>0);
sl= local_nrnssum(local_nrnssum>0);
sb= nrnssum(nrnssum>0);
%sall = [sg' sl' sb'];
%lab = [repmat(1,1,length(sg)) repmat(2,1,length(sl)) repmat(3,1,length(sb)) ];
%sg = sg(1:20);
%sl = sl(1:20);
%sb = sb(1:20);
sall = [sg' sl' sb'];
%sall = [sg' sl'];
lab = [repmat(1,1,length(sg)) repmat(2,1,length(sl)) repmat(3,1,length(sb)) ];
[p, tbl, stats] = kruskalwallis(sall, lab)
boxplot(sall, lab, 'Labels', {'Somatic', 'Local', 'S&L'}, 'colorgroup', lab)
ylabel('# potentiated synapses per neuron')
export_fig(sprintf('%s/BOX_NRNALLOC.pdf', figsdir), '-transparent')
[p, tbl, stats] = kruskalwallis(sall, lab)
[res,means] = multcompare(stats,'CType','bonferroni')
nextplot(1,1)
set(gcf, 'Position', [0,0, 400, 300])
ms = [ mean(sum(global_nrnssum>0, 2)) ; mean(sum(local_nrnssum>0, 2)); mean(sum(nrnssum>0, 2)) ];
ss = [ std(sum(global_nrnssum>0, 2)) ; std(sum(local_nrnssum>0, 2)); std(sum(nrnssum>0, 2))];
ms = 100*ms/(npyrs);
ss = 100*ss/(npyrs);
barwitherr( ss, ms);
title(('Neurons with at least 1 synapse'))
ylabel('% Neurons');
set(gca, 'XTickLabel', { 'Somatic', 'Local', 'S&L'})
export_fig(sprintf('%s/sparse_nrn_alloc.pdf', figsdir), '-transparent')
sg = sum(global_nrnssum>0,2);
sl= sum(local_nrnssum>0,2);
sb= sum(nrnssum>0,2);
sall = [sg sl sb];
%lab = [repmat(1,1,length(sg)) repmat(2,1,length(sl)) repmat(3,1,length(sb)) ];
%%[p, tbl, stats] = anova1(sall)
[res,means] = multcompare(stats,'CType','bonferroni')
nextplot(1,1)
set(gcf, 'Position', [0,0, 400, 300])
ms = [mean(sum(global_nrnssum, 2)); mean(sum(local_nrnssum, 2)); mean(sum(nrnssum, 2))];
ss = [std(sum(global_nrnssum, 2)); std(sum(local_nrnssum, 2)); std(sum(nrnssum, 2)) ];
%ms = 100*ms/(npyrs);
%ss = 100*ss/(npyrs);
barwitherr( ss, ms);
title(('Total potentiated synapses'))
%ylim([0.2,1.0]);
ylabel('# Potentiated Synapses');
set(gca, 'XTickLabel', { 'Somatic', 'Local', 'S&L'})
export_fig(sprintf('%s/sparse_total_syns.pdf', figsdir), '-transparent')
nextplot(1,1)
set(gcf, 'Position', [0,0, 400, 300])
ms = [mean(csus); mean(local_csus)];
ss = [stderr(csus); stderr(local_csus)];
%ms = 100*ms/(npyrs);
%ss = 100*ss/(npyrs);
barwitherr( ss, ms);
title(('CS-US clustering'))
%ylim([0.2,1.0]);
ylabel('# CS/US clusters');
set(gca, 'XTickLabel', { 'S&L', 'Local'})
export_fig(sprintf('%s/sparse_csus.pdf', figsdir), '-transparent')
end
if (0)
bspar = [];
bpop = [];
bfir = [];
bclu = [];
ni=1;
brov = 'nbrov'
for i=0.1:0.1:1.0
CONDITION = sprintf('%s%.1f', brov, i);
an_stats
bspar(ni,: ) = [eb_sp_mean(2), eb_sp_errs(2)];
bfir(ni, :) = [eb_firing_mean(2), eb_firing_errs(2)];
bpop(ni, :) = [eb_act_mean(2), eb_act_errs(2)];
bclu(ni, :) = [eb_clu_mean, eb_clu_errs];
ni = ni+1
end
figure
%barwitherr(bspar(:,2), bspar(:,1)); title('Sparseness');
%set(gca, 'XTick', [1:length(diffs)])
%set(gca, 'XTickLabel', [0.1:0.1:1.0])
%export_fig(sprintf('./figs/%s_sp.pdf', brov), '-transparent')
figure
barwitherr(bfir(:,2), bfir(:,1)); title('Firing rate');
set(gca, 'XTickLabel', [0.1:0.1:1.0])
ylim([0,5]);
export_fig(sprintf('./figs/%s_fir.pdf', brov), '-transparent')
figure
barwitherr(bpop(:,2), bpop(:,1)); title('Population');
set(gca, 'XTickLabel', [0.1:0.1:1.0])
ylim([0,50]);
export_fig(sprintf('./figs/%s_act.pdf', brov), '-transparent')
figure
barwitherr(bclu(:,2)/32, bclu(:,1)/32); title('% Branches with > 2 potentiated synapses');
set(gca, 'XTickLabel', [0.1:0.1:1.0])
ylim([0,20]);
export_fig(sprintf('./figs/%s_clu.pdf', brov), '-transparent')
end
if (strcmp(analyze,'weakstrong'))
results = containers.Map();
CONDAR={'weakstrongN','weakstrong'}
for kk=1:2
COND= CONDAR{kk} %'weakstrongN';
CONDITION=[COND 'L'];
weastrong
local_brcommon = brcommon;
local_brtsyns = brtsyns;
local_nrntsyns = nrntsyns;
CONDITION=[COND 'G'];
weastrong
global_brcommon = brcommon;
global_brtsyns = brtsyns;
global_nrntsyns = nrntsyns;
CONDITION=COND; %'weakstrong';
weastrong
close all
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'act'])
%errorbar( b(2,:,2), b(1,:,2));
%hold on
b2 = results([COND 'Lact'])
%errorbar( b(2,:,2), b(1,:,2), 'g');
%hold off
b22 = results([COND 'Gact'])
b3 = [ b1(1,:,2); b2(1,:,2) ; b22(1,:,2)];
b4 = [ b1(2,:,2); b2(2,:,2) ; b22(2,:,2)];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0.0,0.5,0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
ylim([0,30])
title(sprintf('Coding Neurons (%%)', CONDITION));
xlim([0,9])
export_fig(sprintf('./figs/WS_act_%s.pdf', COND), '-transparent')
c3 = results([COND 'act_d']);
c2 = results([COND 'Lact_d']);
c1 = results([COND 'Gact_d']);
c3 = c3(:,:,2);
c2 = c2(:,:,2);
c1 = c1(:,:,2);
[p, tbl, stats] = anova1(c1)
[res,means] = multcompare(stats, 'CType', 'bonferroni')
%
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'act'])
b2 = results([COND 'Lact'])
b22 = results([COND 'Gact'])
b3 = [ b22(1,:,1); b2(1,:,1); b1(1,:,1) ];
b4 = [ b22(2,:,1); b2(2,:,1); b1(2,:,1) ];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
ylim([0,40])
ylabel('Coding Neurons (%)');
title('Strong memory')
xlim([0,9])
export_fig(sprintf('./figs/WS_act_strong_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'ff'])
b2 = results([COND 'Lff'])
b22 = results([COND 'Gff'])
b3 = [ b22(1,:,2); b2(1,:,2) ; b1(1,:,2) ];
b4 = [ b22(2,:,2) ; b2(2,:,2); ; b1(2,:,2)];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0.0,0.5,0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
title('Avg Firing Frequency (Hz)');
xlim([0,9])
export_fig(sprintf('./figs/WS_ff_%s.pdf', COND), '-transparent')
c3 = results([COND 'act_d']);
c2 = results([COND 'Lact_d']);
c1 = results([COND 'Gact_d']);
c3 = c3(:,:,2);
c2 = c2(:,:,2);
c1 = c1(:,:,2);
[p, tbl, stats] = anova1(c2)
[res,means] = multcompare(stats, 'CType', 'bonferroni')
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'firingcor'])
b2 = results([COND 'Lfiringcor'])
b22 = results([COND 'Gfiringcor'])
b3 = [ b22(1,:); b2(1,:); b1(1,:) ];
b4 = [ b22(2,:); b2(2,:); b1(2,:) ];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
ylim([0,100]);
ylabel('Correlation');
title('Firing rate vector correlation')
xlim([0,9])
export_fig(sprintf('./figs/WS_firingcor_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'common'])
b2 = results([COND 'Lcommon'])
b22 = results([COND 'Gcommon'])
b3 = [ b22(1,:); b2(1,:); b1(1,:) ];
b4 = [ b22(2,:); b2(2,:); b1(2,:) ];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
ylim([0,100]);
ylabel('Common neurons (%)');
title('Common recruited neurons ')
xlim([0,9])
export_fig(sprintf('./figs/WS_coract_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'brcors'])
b2 = results([COND 'Lbrcors'])
b22 = results([COND 'Gbrcors'])
b3 = [b22(1,:); b1(1,:); b2(1,:) ];
b4 = [b22(2,:); b1(2,:); b2(2,:) ];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60);
ylabel('Similarity');
title('Similarity of synaptic projection patterns per branch')
ylim([0,.6]);
xlim([0,9])
export_fig(sprintf('./figs/WS_brcor_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b1 = results([COND 'nrncors'])
b2 = results([COND 'Lnrncors'])
b22 = results([COND 'Gnrncors'])
b3 = [b22(1,:); b1(1,:); b2(1,:) ];
b4 = [b22(2,:); b1(2,:); b2(2,:) ];
h = barwitherr(b3', b4', 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60);
ylabel('Similarity');
title('Similarity of synaptic projection patterns per neuron')
%ylim([=,.8]);
xlim([0,9])
export_fig(sprintf('./figs/WS_nrncor_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b3 = 100.*[ mean(global_brcommon,2), mean(local_brcommon,2), mean(brcommon,2)];
b4 = 100.*[ std(global_brcommon,0,2), std(local_brcommon,0,2), std(brcommon,0,2)];
h = barwitherr(b4, b3, 'LineStyle', 'none');
set(h(3), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0.0,0.5,0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
rotateXLabels(gca, 60)
ylim([0,50]);
title('% Branches with clusters of both memories');
ylabel('% Branches')
xlim([0,9])
export_fig(sprintf('./figs/WS_brcommon_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b3 = [ mean(brtsyns,2), mean(local_brtsyns,2)];
b4 = [ std(brtsyns,0,2), std(local_brtsyns,0,2)];
h = barwitherr(b4, b3, 'LineStyle', 'none');
set(h(1), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', diffs)
rotateXLabels(gca, 60)
ylim([0,900]);
xlim([0,13])
title('Number of branches containing the weak memory');
ylabel('# branches')
export_fig(sprintf('./figs/WS_brtsyns_%s.pdf', COND), '-transparent')
figure;
set(gcf, 'Position', [0,0, 440,300])
b3 = [ mean(nrntsyns,2), mean(local_nrntsyns,2)];
b4 = [ std(nrntsyns,0,2), std(local_nrntsyns,0,2)];
h = barwitherr(b4, b3, 'LineStyle', 'none');
set(h(1), 'facecolor', [0,0,0.5]);
set(h(2), 'facecolor', [0.5,0.0,0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', diffs)
rotateXLabels(gca, 60)
ylim([0,600]);
xlim([0,13])
title('Number of neurons containing the weak memory');
ylabel('# neurons')
export_fig(sprintf('./figs/WS_nrntsyns_%s.pdf', COND), '-transparent')
[p, tbl, stats] = anova1(results([COND 'common_d']))
[res,means] = multcompare(stats, 'CType', 'bonferroni')
[p, tbl, stats] = anova1(results([COND 'firingcor_d']))
[res,means] = multcompare(stats, 'CType', 'bonferroni')
[p, tbl, stats] = anova1(results([COND 'brcors_d']))
[res,means] = multcompare(stats, 'CType', 'bonferroni')
[p, tbl, stats] = anova1(results([COND 'nrncors_d']))
[res,means] = multcompare(stats, 'CType', 'bonferroni')
end
end
if (strcmp(analyze,'strong2'))
close all
CONDITION='strong2L'
strong2
local_brcommon = brcommon;
local_totactive= totactive;
local_totcommon = totcommon;
CONDITION='strong2G'
strong2
global_brcommon = brcommon;
global_totactive= totactive;
global_totcommon = totcommon;
CONDITION='strong2'
strong2
close all
for NMEM=1:2
figure;
hold on
mact = 100.0*mean(totactive,1)
sact = 100.0*std(totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), 'b.');
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'b');
mact = 100.0*mean(local_totactive,1)
sact = 100.0*std(local_totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), COL);
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'r');
mact = 100.0*mean(global_totactive,1)
sact = 100.0*std(global_totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), COL);
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'g');
hold off
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('% Active neurons');
%xlabel('Weak-Strong Interval [minutes]')
ylim([10,50])
export_fig(sprintf('./figs/%s_ACT%d.pdf',CONDITION, NMEM), '-transparent')
end
for NMEM=1:2
figure
hold on
tt = totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), NMEM*100*stderr(dt), 'b')
tt = local_totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), NMEM*100*stderr(dt), 'r')
tt = global_totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), NMEM*100*stderr(dt), 'g')
hold off
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('Increase in Coding Neurons (%)');
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,100])
export_fig(sprintf('./figs/%s_increase%d.pdf',CONDITION, NMEM), '-transparent')
end
figure
bm = [100.*std(global_totcommon)/(sqrt(nruns)); 100.*std(local_totcommon)/(sqrt(nruns)); 100.*std(totcommon)/(sqrt(nruns)) ];
be = [100.*mean(global_totcommon); 100.*mean(local_totcommon) ; 100.*mean(totcommon)];
h=barwitherr(bm', be');
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(h(3), 'facecolor', [0,0.0,0.5]);
title(sprintf('Common Coding Neurons (%%) %s', CONDITION))
ylabel('% common neurons')
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,50])
export_fig(sprintf('./figs/%s_common.pdf',CONDITION), '-transparent')
figure
bm = [100.*std(global_brcommon)/(sqrt(nruns)); 100.*std(local_brcommon)/(sqrt(nruns));; 100.*std(brcommon)/(sqrt(nruns)) ];
be = [100.*mean(global_brcommon); 100.*mean(local_brcommon); 100.*mean(brcommon)];
h=barwitherr(bm', be');
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(h(3), 'facecolor', [0,0.0,0.5]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('% Branches with clusters of both memories')
ylabel('% branches')
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,50])
export_fig(sprintf('./figs/%s_brcommon.pdf',CONDITION), '-transparent')
end
if (strcmp(analyze,'dir'))
close all
DIRS = {'dir1', 'dir2'};
for ddir =1:length(DIRS)
dir = DIRS{ddir};
CONDITION=[ dir 'L']
dir2
local_brcommon = brcommon;
local_totactive= totactive;
local_totcommon = totcommon;
CONDITION= [dir 'G']
dir2
global_brcommon = brcommon;
global_totactive= totactive;
global_totcommon = totcommon;
CONDITION= dir
dir2
close all
for NMEM=1:2
figure;
hold on
mact = 100.0*mean(totactive,1)
sact = 100.0*std(totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), 'b.');
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'b');
mact = 100.0*mean(local_totactive,1)
sact = 100.0*std(local_totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), COL);
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'r');
mact = 100.0*mean(global_totactive,1)
sact = 100.0*std(global_totactive,0,1)/(sqrt(nruns))
%errorbar(mact(:,:,1), sact(:,:,1), COL);
errorbar(mact(:,:,NMEM), sact(:,:,NMEM), 'g');
hold off
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('% Active neurons');
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,70])
export_fig(sprintf('./figs/%s_ACT%d.pdf',CONDITION, NMEM), '-transparent')
end
for NMEM=1:2
figure
hold on
tt = totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), 100*stderr(dt), 'b')
tt = local_totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), 100*stderr(dt), 'r')
tt = global_totactive(:,:,NMEM)
dt = bsxfun(@rdivide, bsxfun(@minus, tt, tt(:,4)), tt(:,4))
errorbar(100*mean(dt), 100*stderr(dt), 'g')
hold off
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('Increase in Coding Neurons (%)');
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,100])
export_fig(sprintf('./figs/%s_increase%d.pdf',CONDITION, NMEM), '-transparent')
end
figure
bm = [100.*std(global_totcommon)/(sqrt(nruns)); 100.*std(local_totcommon)/(sqrt(nruns)); 100.*std(totcommon)/(sqrt(nruns)) ];
be = [100.*mean(global_totcommon); 100.*mean(local_totcommon) ; 100.*mean(totcommon)];
h=barwitherr(bm', be');
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
title(sprintf('Common Coding Neurons (%%) %s', CONDITION))
ylabel('% common neurons')
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,80])
export_fig(sprintf('./figs/%s_common.pdf',CONDITION), '-transparent')
figure
bm = [100.*std(global_brcommon)/(sqrt(nruns)); 100.*std(local_brcommon)/(sqrt(nruns));; 100.*std(brcommon)/(sqrt(nruns)) ];
be = [100.*mean(global_brcommon); 100.*mean(local_brcommon); 100.*mean(brcommon)];
h=barwitherr(bm', be');
set(h(2), 'facecolor', [0.5,0.0,0]);
set(h(1), 'facecolor', [0,0.5,0.0]);
set(gca, 'XTick', [1:length(diffs)])
set(gca, 'XTickLabel', difflabels)
title('% Branches with clusters of both memories')
ylabel('% branches')
%xlabel('Weak-Strong Interval [minutes]')
ylim([0,50])
export_fig(sprintf('./figs/%s_brcommon.pdf',CONDITION), '-transparent')
end
end
if (strcmp(analyze, 'three'))
%CONDITION='threewww'
%three
CONDITION='threesws'
three
CONDITION='threewsw'
three
end
if (strcmp(analyze, 'repeated'))
%CONDITION='repeated'
%repeated
%global_brsynratio = brsynratio;
CONDITION='repeatedUL'
repeated
local_brsynratio = brsynratio;
ta = local_brsynratio';
t = table([1 2 3 4 5 6 7 8 9 10]' , ta(:,1), ta(:,2), ta(:,3),ta(:,4));
CONDITION='repeatedUG'
repeated
global_brsynratio = brsynratio;
end
if (strcmp(analyze, 'multi'))
CONDITION='multiG'
COL='g'
multistats
global_mm = mm;
i=3
cors = sum(m .* tril(circshift(eye(npatterns), i)));
global_cors = cors(1:npatterns-i);
COL='r'
CONDITION='multiL'
multistats
local_mm = mm;
i=3
cors = sum(m .* tril(circshift(eye(npatterns), i)));
local_cors = cors(1:npatterns-i);
aa = [global_cors' local_cors']
anova1(aa)
COL='b'
CONDITION='multiGN'
multistats
globalN_mm = mm;
COL='r'
CONDITION='multiLN'
localN_mm = mm;
multistats
end
if (strcmp(analyze,'brtest'))
CONDITION='brtestL'
an_brtest
local_bb = bb;
local_ba = ba;
local_brcase = brcase;
local_brcases = brcases;
local_actPpre = actPpre;
local_actPost = actPpost;
CONDITION='brtestG'
an_brtest
global_bb = bb;
global_ba = ba;
global_brcase = brcase;
global_brcases = brcases;
global_actPpre = actPpre;
global_actPost = actPpost;
CONDITION='brtest'
an_brtest
close all
figure
%errorbar(100.*mean(ba,2),100.*std(ba,0,2), 'c')
%hold on
errorbar(100.*mean(bb,2),100.*std(bb,0,2), 'b')
hold on
errorbar(100.*mean(local_bb,2),100.*std(local_bb,0,2), 'r')
errorbar(100.*mean(global_bb,2),100.*std(global_bb,0,2), 'g')
set(gca, 'XTick', [1:4])
set(gca, 'XTickLabel', [10:10:40])
title(sprintf('Active population'))
legend( 'S&L', 'Local', 'Somatic');
ylabel('% Active neurons')
xlabel('Number of branches per neuron')
hold off
export_fig(sprintf('./figs/brtest_act.pdf'), '-transparent')
figure
errorbar(brcase,brcases, 'b')
hold on
errorbar(local_brcase,local_brcases, 'r')
errorbar(global_brcase,global_brcases, 'g')
set(gca, 'XTick', [1:4])
set(gca, 'XTickLabel', [10:10:40])
xlabel('Number of branches per neuron')
ylabel('Potentiated synapses per branch');
title(sprintf('Avg. Potentiated synapses per branch'))
legend( 'S&L', 'Local', 'Somatic');
export_fig(sprintf('./figs/brtest_clu.pdf'), '-transparent')
figure
errorbar(mean(mean(actPpre,3),2),std(mean(actPpre,3),0,2), 'b')
hold on
errorbar(mean(mean(local_actPpre,3),2),std(mean(local_actPpre,3),0,2), 'r')
set(gca, 'XTick', [1:4])
set(gca, 'XTickLabel', [10:10:40])
xlabel('Number of branches per neuron')
ylabel('Average firing rate [Hz]');
title(sprintf('Average firing rate'))
legend('Somatic', 'Local');
export_fig(sprintf('./figs/brtest_ff.pdf'), '-transparent')
end