import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42
mfs=22
matplotlib.rc('xtick', labelsize=mfs)
matplotlib.rc('ytick', labelsize=mfs)
matplotlib.rc('axes', labelsize=mfs)
from pylab import *
import numpy as np
import re
import os
datadir = 'N400.B20.I12.i1.P2.p6.T60.S1980.sc_sim0'
RUNSTATS = 0
datadir = datadir.replace('./data/', '');
datadir = datadir.replace('data/', '');
savedir = datadir
p = re.match(r'N(\d+).B(\d+).I(\d+).i(\d+).P(\d+).p(\d+).T(\d+).S(\d+).(.*)', datadir)
RSEED = int(p.group(8))
NTOTAL = int(p.group(1)) #inh + pyr neurons
NBRANCHES = int(p.group(2))
NINPUTS = int(p.group(3))
NPERINPUT = int(p.group(4))
NPATTERNS = int(p.group(5))
NPERPATTERN = int(p.group(6))
INTERSTIM = int(p.group(7))
NPYR = int(0.8*NTOTAL)
PYR_IDS = range(0 , NPYR)
IN_IDS = range(NPYR, NTOTAL)
suff = p.group(9)
NRUNS = 10
if (1):
bp = zeros((6, 4, NRUNS) )
n1 = 0
figure()
for sim in [1,2,3,4,5,6]:
n2 = 0
pp = []
pe = []
for itvl in [60, 120, 180, 300]:
for i in range(0,NRUNS):
ddir = "N%d.B%d.I%d.i%d.P%d.p%d.T%d.S%d.sn_sim%d"%(NTOTAL, NBRANCHES, NINPUTS, NPERINPUT, NPATTERNS, NPERPATTERN, itvl, RSEED+i, sim)
dd = np.load("./data/%s/spcountscorr.npy"%(ddir))
bp[n1, n2, i] = dd[0,1]
pp.append( np.average(bp[n1,n2]) )
pe.append( np.std(bp[n1,n2]))
n2 += 1
h = errorbar(range(len(pp)), pp, yerr=pe, label="%d %%"%(100*(6-sim)/6))
ylim(-0.1, 1.2)
legend()
n1 += 1
lab = ["1 hour","2 hours", "3 hours", "5 hours"]
xticks(range(len(pp)), lab)
legend(loc="center right")
xlim(-0.2, 4.2)
show()