% Fast BK calcium- and voltage-dependent C-type Potassium current (Durstewitz, Seamans, Sejnowski 2000; iC) (also DS02E, DS06E) % removed DS00 max(1.1,*) from ctau as in DS06 Matlab implementation % Parameters gkc=2.2;%1; ki=140; % mM, intracellular potassium concentration IC_noise=0; % Functions eps=.00000001; z(Y) = ((abs(Y)<eps).*eps+(abs(Y)>=eps).*Y) % function to avoid values too close to zero (sets values to eps if closer to zero than eps) Vs(X,@cai)=X+40*log10(@cai) ac(X,@cai)=(-0.00642*z(Vs(X,@cai)+18))./(-1+exp(z(Vs(X,@cai)+18)./(-12))) bc(X,@cai)=1.7*exp((Vs(X,@cai)+152)./(-30.0)) cinf(X,@cai)=ac(X,@cai)./(ac(X,@cai)+bc(X,@cai)) ctau(X,@cai)=1./(ac(X,@cai)+bc(X,@cai)) %max(1.1,1./(ac(X,@cai)+bc(X,@cai))) EK(@ko)=25*log(@ko/ki) % mV, potassium reversal potential IKCa(X,c,@ko)=gkc.*c.^2.*(X-EK(@ko)) % ODEs and ICs c'=(cinf(X,@cai)-c)./ctau(X,@cai) c(0)=cinf(-65,.05)+IC_noise.*rand(1,Npop) % Linkers @current += -IKCa(X,c,@ko) @ik += IKCa(X,c,@ko) %akca_scale=1; %bkca_scale=1; %ac(X,@cai)=akca_scale.*(-.00642*Vs(X,@cai)-.1152)./(-1+exp(-(Vs(X,@cai)+18)/12)) %bc(X,@cai)=bkca_scale.*1.7*exp(-(Vs(X,@cai)+152)/30) %cinf(X,@cai)=ac(X,@cai)./(ac(X,@cai)+bc(X,@cai)) %ctau(X,@cai)=max(1.1,1./(ac(X,@cai)+bc(X,@cai)))