function varargout = recursiveFunc(xp,function_handles,dimensions,function_arguments)
% function_arguments - cell array of argument cell arrays to pass to
% function_handles. Must have one cell array for each function_handle
% passed. Use empty cell arrays for no arguments. E.g.
% function_arguments = { {}, {}, {1} } for nothing, nothing, and
% 1 as arguments.
if nargin < 4
function_arguments = cell(size(function_handles));
for i = 1:length(function_arguments)
function_arguments{i} = {};
end
end
% Validate inputs
Nfh = length(function_handles);
Nd = length(dimensions);
Nfha = length(function_arguments);
if Nfh ~= Nd; error('Number of cells in dimensions must equal the number of function handles supplied'); end
if Nfh ~= Nfha; error('Number of cells in function_arguments must equal number of function handles supplied'); end
% Convert any regular expressions in dimensions into their
% corresponding indices if necessary
dimensions = dimensions_regex_2_index(xp,dimensions);
% Na = ndims(xp);
% N_dims_supplied = sum(cellfun(@length,dimensions));
% if Na ~= N_dims_supplied
% error('Total number of entries supplied in dimensions must equal ndims(xp)');
% end
sz = size(xp);
if length(function_handles) > 1
xp2 = MDD;
selection_curr = cell(1,length(sz));
% Just hardcode in the various cases for dimensionality. It's
% unlikely they will ever want to go above showing 4D in a single
% plot.
switch length(dimensions{1})
case 1 % 1D
dim1 = dimensions{1}(1)
for i = 1:sz(dim1)
selection_curr{dim1} = i
% Note: need to make it a row vector!
mydata{i,1} = @() recursiveFunc_1(xp.subset(selection_curr{:}),function_handles(2:end),dimensions(2:end),function_arguments(2:end));
end
case 2 % 2D
dim1 = dimensions{1}(1);
dim2 = dimensions{1}(2)
for i = 1:sz(dim1)
for j = 1:sz(dim2)
selection_curr{dim1} = i;
selection_curr{dim2} = j
mydata{i,j} = @() recursiveFunc_1(xp.subset(selection_curr{:}),function_handles(2:end),dimensions(2:end),function_arguments(2:end));
end
end
case 3 % 3D
dim1 = dimensions{1}(1);
dim2 = dimensions{1}(2);
dim3 = dimensions{1}(3)
for i = 1:sz(dim1)
for j = 1:sz(dim2)
for k = 1:sz(dim3)
selection_curr{dim1} = i;
selection_curr{dim2} = j;
selection_curr{dim3} = k
mydata{i,j,k} = @() recursiveFunc_1(xp.subset(selection_curr{:}),function_handles(2:end),dimensions(2:end),function_arguments(2:end));
end
end
end
case 4 % 4D
dim1 = dimensions{1}(1);
dim2 = dimensions{1}(2);
dim3 = dimensions{1}(3);
dim4 = dimensions{1}(4)
for i = 1:sz(dim1)
for j = 1:sz(dim2)
for k = 1:sz(dim3)
for l = 1:sz(dim4)
selection_curr{dim1} = i;
selection_curr{dim2} = j;
selection_curr{dim3} = k;
selection_curr{dim4} = l
mydata{i,j,k,l} = @() recursiveFunc_1(xp.subset(selection_curr{:}),function_handles(2:end),dimensions(2:end),function_arguments(2:end));
end
end
end
end
end
% Update axes
for i = 1:length(dimensions{1})
dim_curr = dimensions{1}(i);
myvalues{i} = xp.axis(dim_curr).values;
ax_names{i} = xp.axis(dim_curr).name;
end
size(mydata)
xp2 = xp2.importData(mydata,myvalues,ax_names);
xp2.printAxisInfo
xp2 = xp2.fixAxes;
xp2 = xp2.importMeta(xp.meta);
[varargout{1:nargout}] = function_handles{1}(xp2,function_arguments{1}{:});
else
[varargout{1:nargout}] = function_handles{1}(xp,function_arguments{1}{:});
end
end
function dimensions = dimensions_regex_2_index(xp,dimensions)
for i = 1:length(dimensions)
dim_curr = dimensions{i};
if iscell(dim_curr)
for j = find(cellfun(@ischar,dim_curr))
dim_curr{j} = findaxis_mod(xp,dim_curr{j});
end
if any(cellfun(@length,dim_curr) > 1)
warning('Ambiguous dimension supplied')
end
try
dim_curr = cell2mat(dim_curr);
catch err
error('Ambiguous dimension supplied, unable to create matrix of dimensions for recursiveFunc.')
display(err)
end
elseif ischar(dim_curr)
dim_curr = findaxis_mod(xp,dim_curr);
end
dimensions{i} = dim_curr;
end
end
function out = findaxis_mod(xp,str)
if strcmp(str,'data')
out = 0;
else
out = xp.findaxis(str);
end
end