% Morris-Lecar reduced model % Usage: dsPlot(dsSimulate('ML','vary',{'ML','Iapp',100})) % Description: % "The Morris-Lecar model is a two-dimensional "reduced" excitation model % applicable to systems having two non-inactivating voltage-sensitive % conductances. The original form of the model employed an instantaneously % responding voltage-sensitive Ca2+ conductance for excitation and a delayed % voltage-dependent K+ conductance for recovery." % Reference: % http://www.math.pitt.edu/~bard/bardware/tut/newstyle.html#mlsrc % http://www.scholarpedia.org/article/Morris-Lecar_model ML: dV/dt=(Iapp-Il(V)-Ik(V,w)-Ica(V)+@current)./c dw/dt=lamw(V).*(winf(V)-w) V(0)=-60.899 w(0)=0.014873 Ica(V)=gca.*minf(V).*(V-Vca) Ik(V,w)=gk.*w.*(V-Vk) Il(V)=gl.*(V-Vl) minf(V)=.5*(1+tanh((V-v1)./v2)) winf(V)=.5*(1+tanh((V-v3)./v4)) lamw(V)=phi.*cosh((V-v3)./(2*v4)) Vk=-84; Vl=-60; Vca=120; Iapp=0; gk=8; gl=2; gca=4; c=1; %c=20; v1=-1.2; v2=18; v3=2; v4=30; phi=.04; % for type II dynamics, use v3=2,v4=30,phi=.04 % for type I dynamics, use v3=12,v4=17,phi=.06666667 % monitor intrinsic currents monitor Ica,Ik