% iNMDA: NMDA-type synaptic current with first-order kinetics and magnesium block (see Methods in Neuronal Modeling, Chapter 1) % parameters gNMDA = [0] % mS/cm2, maximal conductance ENMDA = [0] % mV, reversal potential tauNMDA = 285; % page 16: 151.5=1/beta=(1/(.0066[1/ms])) % ms, decay time constant tauNMDAr = 10.6; % page 16: 13.89 = 1/alpha=1/(.072[1/(mM*ms)]) % ms, rise time constant Tmax = 1 % mM, maximal transmitter concentration Vpp = [2] % mV Kp = [5] IC = [0] IC_noise = [0] % fixed variables netcon = ones(N_pre,N_post) % default connectivity matrix (all-to-all) % functions %BMg(X) = 1./(1+exp(-.062*X)*1.5/3.57) % sigmoidal magnesium block from [Methods in Neuronal Modeling] BMg(X) = (1.50265./(1+0.33*exp(X./(-16)))) % sigmoidal magnesium block from [DS00], increases gradually to 1.50265 with postsynaptic voltage above -50mV (i.e., any Vpost EPSPs) NT(X) = Tmax./(1+exp(-(X-Vpp)/Kp)) % sigmoidal neurotransmitter concentration [T] increasing rapidly to Tmax with presynaptic voltage above 0mV (i.e., Vpre spike) INMDA(X,s) = -gNMDA.*BMg(X).*(s*netcon).*(X-ENMDA) % post-synaptic NMDA current % ODEs and ICs s' = NT(X_pre).*(1-s)/tauNMDAr-s/tauNMDA % first-order kinetics for two-state (open/closed) scheme. [s]=fraction of receptors in open state s(0) = IC+IC_noise*rand(1,N_pre) % linkers @current += INMDA(X_post,s)