TITLE Hill-Mashma model
COMMENT
ENDCOMMENT
NEURON {
SUFFIX fHill
RANGE F_norm, Kse, p0_5
RANGE g1, g2, g3
RANGE a0, b0, c0, d0
USEION mg READ mgi VALENCE 2
USEION cl READ cli
}
PARAMETER {
Kse = 0.16
p0_5 = 100.3
g1 = -0.0045
g2 = 0.0981
g3 = 0.6211
a0 = 0.4
b0 = 99.7
c0 = -57.1
d0 = 42.2
xm_init = 5
xce_init = 5
}
STATE {
A
xce
xm
}
ASSIGNED {
F_norm
Fc_norm
mgi
cli
}
BREAKPOINT { LOCAL d_xm, d_xce, d_se
A = mgi
xm = cli
SOLVE state_hill METHOD cnexp
F_norm = p0_5*Kse*xse(xm, xce)/p0_5
}
DERIVATIVE state_hill {
Fc_norm = p0_5*g(xm)*A/p0_5
xce' = dxdt (F_norm, Fc_norm)
}
FUNCTION xse (x, y) { LOCAL d_xm, d_xce, d_se
d_xm = xm - xm_init
d_xce = xce - xce_init
d_se = d_xm - d_xce
if (d_se <= 0) {xse = 0}
else {xse = d_se}
}
FUNCTION g (x) {
:g = exp(-((x-g1)/g2)^2)+g3
g = g1*x^2+g2*x+g3
}
FUNCTION dxdt (x, xc) {LOCAL gain_length
if (x <= xc) {
dxdt = (10^-3)*(-b0*(xc-x))/(x+a0*xc/p0_5)
} else {
gain_length = (-d0*(xc-x))/(2*xc-x+c0*xc/p0_5)
if (gain_length <= 0) {dxdt = (10^-3)*1e5}
else {dxdt = (10^-3)*gain_length}
}
}
INITIAL {
A = 0
xm = xm_init
xce = xce_init
F_norm=1e-5
}