%
%
%
%
%clc
%clear
% close all
% Parameters
D = 1e-3; % This is the refence D for dendrite and inactive spine
lambda=120; %This is lambda for dendrite and inactive spine
K=D/lambda^2; %This is the degradation rate throughout
cdis = 2.0;
I_factor=1.25;
%For matching to Neurn - not used here
GeomFh = 13.1962; %For matching to Neuron - not used herre
Ioh = 0.215e-4*1.125*GeomFh; % and this? What is 1.125?
% --- Model ---
diamN = 0.2;
diamD = 5.0;
diamH = 1;
LH = 1.0;
l = 0.5;
LN = 2.0; %5
Lcrit_lambda_aa = [];
Lcrit_lambda_ai=[];
Lbase = [0.05:0.01:0.5];
% Lbase = [10:300];
Da_arr=D*[1:-.05:.1];
I0_arr=[];
% Auxilary variables for inactive - here D=D, lambda=lambda
s = lambda/2/D;
a = coth(LN/lambda) + (diamN/diamH)^2 * coth(LH/lambda);
B = cosh(LN/lambda) * a - 1/sinh(LN/lambda);
Q = (D/lambda)*sinh(LN/lambda) * a;
Q = Q/B;
P = cosh(l/lambda)/sinh(LH/lambda);
P = P/B;
brk = coth(LH/lambda)+(diamH/diamN)^2*tanh(LN/lambda);%BB
alf = cosh(l/lambda)/(sinh(LH/lambda)*cosh(LN/lambda)*brk);%alpha
bet_new = -(lambda/D)*(cosh(l/lambda)/(sinh(LH/lambda)^2 *brk));
bet_new = bet_new*(cosh(l/lambda)-sinh(LH/lambda)*cosh((LH-l)/lambda)*brk);
%setting current to obtain bistabiltiy in isolated spine
FA=(((alf * ((diamN/diamD)^2)) *P)/((1+((lambda/(2*D))*((diamN/diamD)^2))*Q)))+(2*D/lambda)*bet_new;
FB=(((2*alf * ((diamN/diamD)^2)) *P)/((1+(lambda/(2*D))*((diamN/diamD)^2)*Q)));
for Da=Da_arr %runs over different values of Da - D for active spines
lambda_a=sqrt(Da/K);
%auxillary variables for active case
a_a = coth(LN/lambda_a) + (diamN/diamH)^2 * coth(LH/lambda_a);
B_a = cosh(LN/lambda_a) * a_a - 1/sinh(LN/lambda_a);
Q_a = (Da/lambda_a)*sinh(LN/lambda_a) * a_a;
Q_a = Q_a/B_a;
P_a = cosh(l/lambda_a)/sinh(LH/lambda_a);
P_a = P_a/B_a;
% Effective source in dendrite
%Id = Ioh*(diamN/diamD)^2*P/(1-lambda/2/D*(diamN/diamD)^2*Q); %eg 26?
brk_a = coth(LH/lambda_a)+(diamH/diamN)^2*tanh(LN/lambda_a);%BB
alf_a = cosh(l/lambda_a)/(sinh(LH/lambda_a)*cosh(LN/lambda_a)*brk_a);%alpha
bet_a = -(lambda_a/Da)*(cosh(l/lambda_a)/(sinh(LH/lambda_a)^2 *brk_a));
bet_a = bet_a*(cosh(l/lambda_a)-sinh(LH/lambda_a)*cosh((LH-l)/lambda_a)*brk_a);
%setting current to obtain bistabiltiy in isolated spine
FA_a=(((alf_a * ((diamN/diamD)^2)) *P_a)/((1+((lambda/(2*D))*((diamN/diamD)^2))*Q_a)))+(2*D/lambda)*bet_a;
FB_a=(((2*alf_a * ((diamN/diamD)^2)) *P_a)/((1+(lambda/(2*D))*((diamN/diamD)^2)*Q_a)));
MMMa=lambda*log(1+I_factor*FB_a/FA_a);
Lcrit_lambda_aa=[Lcrit_lambda_aa,MMMa];
MMMi=lambda*log(1+I_factor*FB_a/FA);
Lcrit_lambda_ai=[Lcrit_lambda_ai,MMMi];
%FA_a/FA
end
figure(10);
F10=plot(Da_arr/D,Lcrit_lambda_aa,'LineWidth',2);
hold on
F10a=plot(Da_arr/D,Lcrit_lambda_ai,'-.','LineWidth',2);
title("Different Diffusion in Spines");
xlabel("D_a/D");
ylabel("Distance between spines (\mu m)");