/* This program separate the columns of lp.col.?? */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "nr.h"
#include "plp.h"
#define NR_END 1
#define FREE_ARG char*
main(int argc, char*argv[])
{
fl_st fl;
run_par runpar;
if (argc >= 2) strcpy(fl.suffix,argv[1]);
fl.in = fopen("plp.n", "r");
fl.out = fopen(strcat(strcpy(fl.file_name,"plp.out."),fl.suffix), "w");
fl.res = fopen(strcat(strcpy(fl.file_name,"plp.res."),fl.suffix), "w");
fl.col = fopen(strcat(strcpy(fl.file_name,"tlp.col."),fl.suffix), "r");
/* reading input parameters and computing the maximal column */
read_input(&runpar, fl);
while (read_write_data_from_one_parameter_set(&runpar, &fl) != 0)
{
fscanf(fl.col, "\n");
}
free_ivector(runpar.colar, 1, runpar.ncol);
fclose(fl.in);
fclose(fl.col);
fclose(fl.out);
fclose(fl.res);
}
/* This function reads the input parameters from the file plp.n */
/* and computs the maximal column */
void read_input(run_par *runpar, fl_st fl)
{
int icol;
runpar->epsilon = 1.0e-10;
fscanf(fl.in, "ncol=%d\n", &runpar->ncol);
fprintf(fl.out, "ncol=%d\n", runpar->ncol);
runpar->colar = ivector(1, runpar->ncol);
fscanf(fl.in, "colar=");
for (icol=1; icol<=runpar->ncol-1; icol++)
fscanf(fl.in, "%d ", &runpar->colar[icol]);
fscanf(fl.in, "%d\n", &runpar->colar[runpar->ncol]);
fprintf(fl.out, "colar=");
for (icol=1; icol<=runpar->ncol-1; icol++)
fprintf(fl.out, "%d ", runpar->colar[icol]);
fprintf(fl.out, "%d\n", runpar->colar[runpar->ncol]);
fscanf(fl.in, "ult=%d upt=%d ura=%d urb=%d alt=%d apt=%d\n", &runpar->ult,
&runpar->upt, &runpar->ura, &runpar->urb, &runpar->alt, &runpar->apt);
fscanf(fl.in, "t_inter=%lf t_off_ra=%lf t_off_rb=%lf\n", &runpar->t_inter,
&runpar->t_off_ra, &runpar->t_off_rb);
fprintf(fl.out, "ult=%d upt=%d ura=%d urb=%d alt=%d apt=%d\n", runpar->ult,
runpar->upt, runpar->ura, runpar->urb, runpar->alt, runpar->apt);
fprintf(fl.out, "t_inter=%lf t_off_ra=%lf t_off_rb=%lf\n", runpar->t_inter,
runpar->t_off_ra, runpar->t_off_rb);
fscanf(fl.in, "nskip=%d average_cycle=%d\n", &runpar->nskip,
&runpar->average_cycle);
fprintf(fl.out, "nskip=%d average_cycle=%d\n", runpar->nskip,
runpar->average_cycle);
fscanf(fl.in, "t_integrate=%lf\n", &runpar->t_integrate);
fprintf(fl.out, "t_integrate=%lf\n", runpar->t_integrate);
runpar->max_nc = 0;
for (icol=1; icol<=runpar->ncol; icol++)
{
if (runpar->colar[icol] > runpar->max_nc)
runpar->max_nc = runpar->colar[icol];
}
fprintf(fl.out, "max_nc=%d\n", runpar->max_nc);
}
/* This function reads the data for one set of parameters */
/* and print them on separate files */
int read_write_data_from_one_parameter_set(run_par *runpar, fl_st *fl)
{
double *vec_read;
double ff, Tall, t_start;
double ***av_ar;
int icol, iread, iraw, istop, nch;
int *num_ar, inar;
char cnum[4], line[Mline], *p1;
av_ar = d3tensor(1, 6, 1, Mstore, 1, 2);
num_ar = ivector(1, 6);
for (inar=1; inar<=6; inar++) num_ar[inar] = 0;
istop = fgets(line, Mline, fl->col) != NULL;
if (istop == 0) return(istop);
nch = strlen(line);
line[nch-1] = '\0';
vec_read = dvector(1, runpar->max_nc);
/* opening column files */
fl->ar = fl_vector(1, runpar->ncol + 2);
for (icol=1; icol<=runpar->ncol; icol++)
{
sprintf(cnum, ".%d\0", icol);
fl->ar[icol] = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),cnum),"w");
}
fl->ult = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".ult"),"w");
fl->upt = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".upt"),"w");
fl->ura = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".ura"),"w");
fl->urb = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".urb"),"w");
fl->alt = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".alt"),"w");
fl->apt = fopen(strcat(strcat(strcpy(fl->file_name,"plp.xx."),
line),".apt"),"w");
/* calculating relevant times for comparison figures */
fscanf(fl->col, "%lf %lf\n", &ff, &Tall);
t_start = ((int) (Tall * ff / 1000.0)) * (1000.0 / ff);
while (Tall - t_start < runpar->t_inter) t_start -= (1000.0 / ff);
t_start -= (runpar->average_cycle - 1) * (1000.0 / ff);
if (t_start < 0.0) printf("t_start=%lf < 0.0 !\n", t_start);
printf("t_start=%lf\n", t_start);
/* reading the data from fl->col and printing them on the column files */
iraw = -1;
/*
fprintf(fl->ult, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
fprintf(fl->upt, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
fprintf(fl->alt, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
fprintf(fl->apt, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
fprintf(fl->ura, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
fprintf(fl->urb, "ff=%lf average_cycle=%d\n", ff, runpar->average_cycle);
*/
while (istop = fgets(line, Mline, fl->col) != NULL)
{
if (strncmp(line, "EOF", 3) == 0)
{
istop = -1;
break;
}
p1 = strtok(line, " ");
sscanf(p1, "%lf", &vec_read[1]);
for (iread=2; iread<=runpar->max_nc; iread++)
{
p1 = strtok(NULL, " ");
sscanf(p1, "%lf", &vec_read[iread]);
}
iraw++;
if (iraw % runpar->nskip == 0)
{
for (icol=1; icol<=runpar->ncol; icol++)
fprintf(fl->ar[icol], "%lf %lf\n", vec_read[1] / 1000.0,
vec_read[runpar->colar[icol]]);
}
if ((vec_read[1] + runpar->epsilon >= t_start) &&
(vec_read[1] - runpar->epsilon <= t_start +
runpar->average_cycle * (1000.0 / ff)))
{
if (iraw % runpar->nskip == 0)
{
/* printf("iraw=%d ult=%d vr1=%lf vmt=%lf v=%lf\n", iraw, runpar->ult, vec_read[1], (vec_read[1] - t_start) / 1000.0, vec_read[runpar->ult]); */
store_pr((vec_read[1] - t_start) / 1000.0, vec_read[runpar->ult],
av_ar, num_ar, 1, fl->ult);
store_pr((vec_read[1] - t_start) / 1000.0, vec_read[runpar->upt],
av_ar, num_ar, 2, fl->upt);
store_pr((vec_read[1] - t_start) / 1000.0, vec_read[runpar->alt],
av_ar, num_ar, 3, fl->alt);
store_pr((vec_read[1] - t_start) / 1000.0, vec_read[runpar->apt],
av_ar, num_ar, 4, fl->apt);
/*
fprintf(fl->ult, "%lf %lf\n", (vec_read[1] - t_start) / 1000.0,
vec_read[runpar->ult]);
fprintf(fl->upt, "%lf %lf\n", (vec_read[1] - t_start) / 1000.0,
vec_read[runpar->upt]);
fprintf(fl->alt, "%lf %lf\n", (vec_read[1] - t_start) / 1000.0,
vec_read[runpar->alt]);
fprintf(fl->apt, "%lf %lf\n", (vec_read[1] - t_start) / 1000.0,
vec_read[runpar->apt]);
*/
}
}
if (vec_read[1] + runpar->epsilon >= t_start - runpar->t_off_ra)
{
if (iraw % runpar->nskip == 0)
{
store_pr((vec_read[1] - t_start + runpar->t_off_ra) / 1000.0,
vec_read[runpar->ura], av_ar, num_ar, 5, fl->ura);
/*
fprintf(fl->ura, "%lf %lf\n", (vec_read[1] - t_start +
runpar->t_off_ra) / 1000.0, vec_read[runpar->ura]);
*/
}
}
if (vec_read[1] + runpar->epsilon >= t_start - runpar->t_off_rb)
{
if (iraw % runpar->nskip == 0)
{
store_pr((vec_read[1] - t_start + runpar->t_off_rb) / 1000.0,
vec_read[runpar->urb], av_ar, num_ar, 6, fl->urb);
/*
fprintf(fl->urb, "%lf %lf\n", (vec_read[1] - t_start +
runpar->t_off_rb) / 1000.0, vec_read[runpar->urb]);
*/
}
}
}
printf("av=%lf %lf\n", av_ar[1][100][1], av_ar[1][100][2]);
average_over_cycles(av_ar[1], num_ar[1], ff, runpar->average_cycle, 1,
fl->ult, runpar, fl);
average_over_cycles(av_ar[2], num_ar[2], ff, runpar->average_cycle, 2,
fl->upt, runpar, fl);
average_over_cycles(av_ar[3], num_ar[3], ff, runpar->average_cycle, 3,
fl->alt, runpar, fl);
average_over_cycles(av_ar[4], num_ar[4], ff, runpar->average_cycle, 4,
fl->apt, runpar, fl);
average_over_cycles(av_ar[5], num_ar[5], ff, runpar->average_cycle, 5,
fl->ura, runpar, fl);
average_over_cycles(av_ar[6], num_ar[6], ff, runpar->average_cycle, 6,
fl->urb, runpar, fl);
free_dvector(vec_read, 1, runpar->max_nc);
free_d3tensor(av_ar, 1, 6, 1, Mstore, 1, 2);
free_ivector(num_ar, 1, 6);
for (icol=1; icol<=runpar->ncol; icol++)
fclose(fl->ar[icol]);
fclose(fl->ult);
fclose(fl->upt);
fclose(fl->ura);
fclose(fl->urb);
fclose(fl->alt);
fclose(fl->apt);
free_fl_vector(fl->ar, 1, runpar->ncol);
return(istop);
}
FILE** fl_vector(long nl, long nh)
/* allocate a *FILE vector with subscript range v[nl..nh] */
{
FILE **fl;
fl = (FILE **)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(FILE*)));
if (!fl) nrerror("allocation failure in fl_vector()");
return fl-nl+NR_END;
}
void free_fl_vector(FILE **fl, long nl, long nh)
/* free a *FILE vector allocated with fl_vector() */
{
free((FREE_ARG) (fl+nl-NR_END));
}
void store_pr(double x1, double x2, double ***av_ar, int *num_ar, int inar,
FILE *fu)
{
/* fprintf(fu, "%lf %lf\n", x1, x2); */
num_ar[inar]++;
if (num_ar[inar] > Mstore)
{
printf("inar=%d num_ar=%d > Mstore !\n", inar, num_ar[inar]);
exit(0);
}
av_ar[inar][num_ar[inar]][1] = x1;
av_ar[inar][num_ar[inar]][2] = x2;
/* printf("inar=%d num_ar=%d av_ar=%lf %lf\n", inar, num_ar[inar],
av_ar[inar][num_ar[inar]][1], av_ar[inar][num_ar[inar]][2]); */
}
void average_over_cycles(double **av_ar, int num_ar, double ff,
int average_cycle, int inar, FILE *fu, run_par *runpar, fl_st *fl)
{
double **vec_av, tm, t_in_per, delta_t, dt, diff, a1, a2;
int iar, ncut, icut;
delta_t = av_ar[2][1] - av_ar[1][1];
ncut = 1 + (int) ( ((1.0 / ff) + 1.0e-6) / delta_t);
vec_av = dmatrix(0, ncut, 1, 2);
for (icut=0; icut<=ncut; icut++)
{
vec_av[icut][1] = icut * delta_t;
vec_av[icut][2] = 0.0;
}
for (iar=1; iar<=num_ar; iar++)
{
tm = av_ar[iar][1];
if (tm < (1.0 * average_cycle) / ff)
{
t_in_per = tm - (1.0 * ((int) (tm * ff)) / ff);
icut = (int) ((t_in_per / delta_t) + 1.0e-10);
diff = fabs(t_in_per - icut * delta_t);
if (diff < 2.0e-10)
{
vec_av[icut][2] += av_ar[iar][2];
}
else
{
dt = t_in_per - icut * delta_t;
if (dt < 1.0e-10)
{
printf("dt=%lf < 0!\n", dt);
exit(0);
}
a1 = ((delta_t - dt) / delta_t) * av_ar[iar][2];
a2 = (dt / delta_t) * av_ar[iar][2];
vec_av[icut][2] += a1;
vec_av[icut+1][2] += a2;
}
}
}
for (icut=0; icut<=ncut-1; icut++)
vec_av[icut][2] /= average_cycle;
/* icut=0 was changed to icut=1 */
/* printing to ncut-1 instead of ncut-2 */
for (icut=1; icut<=ncut-2; icut++)
fprintf(fu, "%lf %lf\n", 1000.0 * vec_av[icut][1], vec_av[icut][2]);
quantify_psth(vec_av, ncut, ff, average_cycle, inar, delta_t, fu, runpar,
fl);
/* fprintf(fu, " \n");
for (iar=1; iar<=num_ar; iar++)
{
fprintf(fu, "%lf %lf\n", av_ar[iar][1], av_ar[iar][2]);
} */
free_dmatrix(vec_av, 0, ncut, 1, 2);
}
void quantify_psth(double **vec_av, int ncut, double ff, int average_cycle,
int inar, double delta_t, FILE *fu, run_par *runpar, fl_st *fl)
{
double max_dist, hlat[4], tlat[4], dint, dtint;
int icut, ilat;
max_dist = find_maximum_dist(vec_av, ncut, ff, inar, delta_t, runpar, fl);
hlat[0] = 0.005 * max_dist;
hlat[1] = 0.1 * max_dist;
hlat[2] = 0.3 * max_dist;
hlat[3] = 0.5 * max_dist;
for (ilat=0; ilat<=3; ilat++)
{
tlat[ilat] = find_latency(hlat[ilat], vec_av, ncut, ff, inar, delta_t,
runpar, fl);
}
integral_cal(vec_av, ncut, ff, inar, delta_t, runpar, &dint, &dtint, fl);
fprintf(fl->out, "max_dist=%lf", max_dist);
for (ilat=0; ilat<=3; ilat++) fprintf(fl->out, " tlat=%lf", tlat[ilat]);
fprintf(fl->out, " dint=%lf dtint=%lf", dint, dtint);
fprintf(fl->out, "\n");
fprintf(fl->res, "%lf %d", ff, inar);
for (ilat=0; ilat<=3; ilat++) fprintf(fl->res, " %lf", tlat[ilat]);
fprintf(fl->res, " %lf %lf\n", dint, dtint);
}
double find_maximum_dist(double **vec_av, int ncut, double ff, int inar,
double delta_t, run_par *runpar, fl_st *fl)
{
double maxdis;
int icut;
maxdis=0;
for (icut=1; icut<=ncut; icut++)
{
if (vec_av[icut][2] > maxdis) maxdis = vec_av[icut][2];
}
return maxdis;
}
double find_latency(double hlat, double **vec_av, int ncut, double ff,
int inar, double delta_t, run_par *runpar, fl_st *fl)
{
double tlat;
int icut, ithr, uabove;
ithr = 0;
tlat = 0.0;
if (vec_av[0][2] > hlat + runpar->epsilon)
{
tlat = -0.1;
return tlat;
}
uabove = 0;
for (icut=1; icut<=ncut; icut++)
{
ithr = icut;
if (vec_av[icut][2] > hlat)
{
uabove = 1;
break;
}
}
if (uabove = 1)
{
if (vec_av[ithr-1][2] <= runpar->epsilon)
{
if (ithr <= ncut-1)
{
tlat = lininter(vec_av[ithr][2], vec_av[ithr+1][2], hlat,
vec_av[ithr][1], vec_av[ithr+1][1]);
}
else
{
tlat = vec_av[ithr][1];
}
}
else
{
tlat = lininter(vec_av[ithr-1][2], vec_av[ithr][2], hlat,
vec_av[ithr-1][1], vec_av[ithr][1]);
}
}
else
{
tlat = -999.0;
}
/* fprintf(fl->out, "hlat=%lf u=%d ithr=%d v=%lf %lf tlat=%lf\n", hlat,
uabove, ithr, vec_av[icut][1], vec_av[icut][2], tlat); */
return tlat;
}
void integral_cal(double **vec_av, int ncut, double ff, int inar,
double delta_t, run_par *runpar, double *dint, double *dtint, fl_st *fl)
{
double xi, xit, t_integrate;
int ninteg, icut;
t_integrate = runpar->t_integrate;
if (t_integrate > 1.0 / ff) t_integrate = 1.0 / ff;
ninteg = (int) (runpar->epsilon + t_integrate / delta_t);
fprintf(fl->out, "ff=%lf inar=%d, ningeg=%d ncut=%d\n", ff, inar, ninteg,
ncut);
xi = 0.0;
xit = 0.0;
for (icut=1; icut<=ninteg; icut++)
{
xi += vec_av[icut][2];
xit += vec_av[icut][2] * vec_av[icut][1];
}
xi *= delta_t;
xit *= delta_t;
*dint = xi;
if (xi >= runpar->epsilon)
*dtint = xit / xi;
else
*dtint = -999.0;
}
/* Linear interpolation */
double lininter(double x1, double x2, double xc, double y1, double y2)
{
double linter;
linter = ((xc-x1)*y2+(x2-xc)*y1) / (x2-x1) ;
return(linter);
}