<?xml version='1.0' encoding='utf-8'?> <model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" name="butera_1999" cmeta:id="butera_1999"> <documentation xmlns="http://cellml.org/tmp-documentation"> <article> <articleinfo> <title>Models Of Respiratory Rhythm Generation In The Pre-Botzinger Complex. I. Bursting Pacemaker Neurons</title> <author> <firstname>Catherine</firstname> <surname>Lloyd</surname> <affiliation> <shortaffil>Auckland Bioengineering Institute, The University of Auckland</shortaffil> </affiliation> </author> </articleinfo> <section id="sec_status"> <title>Model Status</title> <para> This CellML model runs in OpenCell and COR to reproduce the published results (Figure 5 A3 where E_L = -50 mv). Please note that the model has to be run for a duration of 10000 ms with a step size of 0.01 ms and a high point density of 100000 points/graph. This model represents model 2 from the published paper (which includes a slow potassium current). </para> </section> <sect1 id="sec_structure"> <title>Model Structure</title> <para> ABSTRACT: A network of oscillatory bursting neurons with excitatory coupling is hypothesized to define the primary kernel for respiratory rhythm generation in the pre-Botzinger complex (pre-BotC) in mammals. Two minimal models of these neurons are proposed. In model 1, bursting arises via fast activation and slow inactivation of a persistent Na+ current INaP-h. In model 2, bursting arises via a fast-activating persistent Na+ current INaP and slow activation of a K+ current IKS. In both models, action potentials are generated via fast Na+ and K+ currents. The two models have few differences in parameters to facilitate a rigorous comparison of the two different burst-generating mechanisms. Both models are consistent with many of the dynamic features of electrophysiological recordings from pre-BotC oscillatory bursting neurons in vitro, including voltage-dependent activity modes (silence, bursting, and beating), a voltage-dependent burst frequency that can vary from 0.05 to greater than 1 Hz, and a decaying spike frequency during bursting. These results are robust and persist across a wide range of parameter values for both models. However, the dynamics of model 1 are more consistent with experimental data in that the burst duration decreases as the baseline membrane potential is depolarized and the model has a relatively flat membrane potential trajectory during the interburst interval. We propose several experimental tests to demonstrate the validity of either model and to differentiate between the two mechanisms. </para> <para> The complete original paper reference is cited below: </para> <para> Models of Respiratory Rhythm Generation in the Pre-Botzinger Complex. I. Bursting Pacemaker Neurons, Robert J. Butera, Jr., John Rinzel and Jeffrey C. Smith, 1999, <emphasis>Journal of Neurophysiology</emphasis>, 81, 382-397. <ulink url="http://www.ncbi.nlm.nih.gov/pubmed/10400966">PubMed ID: 10400966</ulink> </para> <informalfigure float="0" id="fig_cell_diagram1"> <mediaobject> <imageobject> <objectinfo> <title>diagram of the first model</title> </objectinfo> <imagedata fileref="butera_1999a.png"/> </imageobject> </mediaobject> <caption>The first mathematical model is based on a single-compartment Hodgkin-Huxley type formalism. It is composed of five ionic currents across the plasma membrane: a fast sodium current, I<subscript>Na</subscript>; a delayed rectifier potassium current, I<subscript>K</subscript>; a persistent sodium current, I<subscript>NaP</subscript>; a passive leakage current, I<subscript>L</subscript>; and a tonic current, I<subscript>tonic_e</subscript> (although this last current is considered to be inactive in these models).</caption> </informalfigure> <informalfigure float="0" id="fig_cell_diagram2"> <mediaobject> <imageobject> <objectinfo> <title>diagram of the first model</title> </objectinfo> <imagedata fileref="butera_1999b.png"/> </imageobject> </mediaobject> <caption>The second model appears identical to the first except with the addition of a slow K<superscript>+</superscript> current, I<subscript>KS</subscript>. (The removal of the inactivation term "h" from I<subscript>NaP</subscript> is not visible in the model diagram.)</caption> </informalfigure> </sect1> </article> </documentation> <units name="millisecond"> <unit units="second" prefix="milli"/> </units> <units name="millivolt"> <unit units="volt" prefix="milli"/> </units> <units name="picoA"> <unit units="ampere" prefix="nano"/> </units> <units name="nanoS"> <unit units="siemens" prefix="nano"/> </units> <units name="picoF"> <unit units="farad" prefix="pico"/> </units> <component name="environment"> <variable units="millisecond" public_interface="out" name="time"/> </component> <component name="membrane"> <variable units="millivolt" public_interface="out" name="V" initial_value="-55.0"/> <variable units="picoF" name="C" initial_value="21.0"/> <variable units="picoA" name="i_app" initial_value="0.0"/> <variable units="millisecond" public_interface="in" name="time"/> <variable units="picoA" public_interface="in" name="i_NaP"/> <variable units="picoA" public_interface="in" name="i_Na"/> <variable units="picoA" public_interface="in" name="i_K"/> <variable units="picoA" public_interface="in" name="i_KS"/> <variable units="picoA" public_interface="in" name="i_L"/> <variable units="picoA" public_interface="in" name="i_tonic_e"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="membrane_voltage_diff_eq"> <eq/> <apply> <diff/> <bvar> <ci> time </ci> </bvar> <ci> V </ci> </apply> <apply> <divide/> <apply> <plus/> <apply> <minus/> <apply> <plus/> <ci> i_NaP </ci> <ci> i_KS </ci> <ci> i_Na </ci> <ci> i_K </ci> <ci> i_L </ci> <ci> i_tonic_e </ci> </apply> </apply> <ci> i_app </ci> </apply> <ci> C </ci> </apply> </apply> </math> </component> <component name="fast_sodium_current"> <variable units="picoA" public_interface="out" name="i_Na"/> <variable units="millivolt" public_interface="out" name="E_Na" initial_value="50.0"/> <variable units="nanoS" name="g_Na" initial_value="28.0"/> <variable units="millisecond" public_interface="in" private_interface="out" name="time"/> <variable units="millivolt" public_interface="in" private_interface="out" name="V"/> <variable units="dimensionless" private_interface="in" name="m_infinity"/> <variable units="dimensionless" private_interface="in" name="n"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_Na_calculation"> <eq/> <ci> i_Na </ci> <apply> <times/> <ci> g_Na </ci> <apply> <power/> <ci> m_infinity </ci> <cn cellml:units="dimensionless"> 3.0 </cn> </apply> <apply> <minus/> <cn cellml:units="dimensionless"> 1.0 </cn> <ci> n </ci> </apply> <apply> <minus/> <ci> V </ci> <ci> E_Na </ci> </apply> </apply> </apply> </math> </component> <component name="fast_sodium_current_m_gate"> <variable units="dimensionless" public_interface="out" name="m_infinity"/> <variable units="millivolt" name="theta_m" initial_value="-34.0"/> <variable units="millivolt" name="sigma_m" initial_value="-5.0"/> <variable units="millivolt" public_interface="in" name="V"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="fast_sodium_current_m_gate_m_infinity_calculation"> <eq/> <ci> m_infinity </ci> <apply> <divide/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <plus/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <exp/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_m </ci> </apply> <ci> sigma_m </ci> </apply> </apply> </apply> </apply> </apply> </math> </component> <component name="fast_sodium_current_n_gate"> <variable units="dimensionless" public_interface="out" name="n" initial_value="0.01"/> <variable units="dimensionless" name="n_infinity"/> <variable units="millisecond" name="tau_n"/> <variable units="millisecond" name="tau_n_max" initial_value="10.0"/> <variable units="millivolt" name="theta_n" initial_value="-29.0"/> <variable units="millivolt" name="sigma_n" initial_value="-4.0"/> <variable units="millivolt" public_interface="in" name="V"/> <variable units="millisecond" public_interface="in" name="time"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="fast_sodium_current_n_gate_n_diff_eq"> <eq/> <apply> <diff/> <bvar> <ci> time </ci> </bvar> <ci> n </ci> </apply> <apply> <divide/> <apply> <minus/> <ci> n_infinity </ci> <ci> n </ci> </apply> <ci> tau_n </ci> </apply> </apply> <apply id="fast_sodium_current_n_gate_n_infinity_calculation"> <eq/> <ci> n_infinity </ci> <apply> <divide/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <plus/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <exp/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_n </ci> </apply> <ci> sigma_n </ci> </apply> </apply> </apply> </apply> </apply> <apply id="fast_sodium_current_n_gate_tau_n_calculation"> <eq/> <ci> tau_n </ci> <apply> <divide/> <ci> tau_n_max </ci> <apply> <cosh/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_n </ci> </apply> <apply> <times/> <cn cellml:units="dimensionless"> 2.0 </cn> <ci> sigma_n </ci> </apply> </apply> </apply> </apply> </apply> </math> </component> <component name="potassium_current"> <variable units="picoA" public_interface="out" name="i_K"/> <variable units="millivolt" public_interface="out" name="E_K" initial_value="-85.0"/> <variable units="nanoS" name="g_K" initial_value="11.2"/> <variable units="millisecond" public_interface="in" private_interface="out" name="time"/> <variable units="millivolt" public_interface="in" private_interface="out" name="V"/> <variable units="dimensionless" private_interface="in" name="n"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_K_calculation"> <eq/> <ci> i_K </ci> <apply> <times/> <ci> g_K </ci> <apply> <power/> <ci> n </ci> <cn cellml:units="dimensionless"> 4.0 </cn> </apply> <apply> <minus/> <ci> V </ci> <ci> E_K </ci> </apply> </apply> </apply> </math> </component> <component name="potassium_current_n_gate"> <variable units="dimensionless" public_interface="out" name="n" initial_value="0.01"/> <variable units="dimensionless" name="n_infinity"/> <variable units="millisecond" name="tau_n"/> <variable units="millisecond" name="tau_n_max" initial_value="10.0"/> <variable units="millivolt" name="theta_n" initial_value="-29.0"/> <variable units="millivolt" name="sigma_n" initial_value="-4.0"/> <variable units="millivolt" public_interface="in" name="V"/> <variable units="millisecond" public_interface="in" name="time"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="potassium_current_n_gate_n_diff_eq"> <eq/> <apply> <diff/> <bvar> <ci> time </ci> </bvar> <ci> n </ci> </apply> <apply> <divide/> <apply> <minus/> <ci> n_infinity </ci> <ci> n </ci> </apply> <ci> tau_n </ci> </apply> </apply> <apply id="potassium_current_n_gate_n_infinity_calculation"> <eq/> <ci> n_infinity </ci> <apply> <divide/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <plus/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <exp/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_n </ci> </apply> <ci> sigma_n </ci> </apply> </apply> </apply> </apply> </apply> <apply id="potassium_current_n_gate_tau_n_calculation"> <eq/> <ci> tau_n </ci> <apply> <divide/> <ci> tau_n_max </ci> <apply> <cosh/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_n </ci> </apply> <apply> <times/> <cn cellml:units="dimensionless"> 2.0 </cn> <ci> sigma_n </ci> </apply> </apply> </apply> </apply> </apply> </math> </component> <component name="slow_potassium_current"> <variable units="picoA" public_interface="out" name="i_KS"/> <variable units="nanoS" name="g_KS" initial_value="5.6"/> <variable units="millivolt" public_interface="in" name="E_K"/> <variable units="millisecond" public_interface="in" private_interface="out" name="time"/> <variable units="millivolt" public_interface="in" private_interface="out" name="V"/> <variable units="dimensionless" private_interface="in" name="k"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_KS_calculation"> <eq/> <ci> i_KS </ci> <apply> <times/> <ci> g_KS </ci> <ci> k </ci> <apply> <minus/> <ci> V </ci> <ci> E_K </ci> </apply> </apply> </apply> </math> </component> <component name="slow_potassium_current_k_gate"> <variable units="dimensionless" public_interface="out" name="k" initial_value="0.22"/> <variable units="dimensionless" name="k_infinity"/> <variable units="millisecond" name="tau_k"/> <variable units="millisecond" name="tau_k_max" initial_value="10000.0"/> <variable units="millivolt" name="theta_k" initial_value="-38.0"/> <variable units="millivolt" name="sigma_k" initial_value="-6.0"/> <variable units="millivolt" public_interface="in" name="V"/> <variable units="millisecond" public_interface="in" name="time"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="slow_potassium_current_k_gate_k_diff_eq"> <eq/> <apply> <diff/> <bvar> <ci> time </ci> </bvar> <ci> k </ci> </apply> <apply> <divide/> <apply> <minus/> <ci> k_infinity </ci> <ci> k </ci> </apply> <ci> tau_k </ci> </apply> </apply> <apply id="slow_potassium_current_k_gate_k_infinity_calculation"> <eq/> <ci> k_infinity </ci> <apply> <divide/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <plus/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <exp/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_k </ci> </apply> <ci> sigma_k </ci> </apply> </apply> </apply> </apply> </apply> <apply id="slow_potassium_current_k_gate_tau_k_calculation"> <eq/> <ci> tau_k </ci> <apply> <divide/> <ci> tau_k_max </ci> <apply> <cosh/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_k </ci> </apply> <apply> <times/> <cn cellml:units="dimensionless"> 2.0 </cn> <ci> sigma_k </ci> </apply> </apply> </apply> </apply> </apply> </math> </component> <component name="persistent_sodium_current"> <variable units="picoA" public_interface="out" name="i_NaP"/> <variable units="nanoS" name="g_NaP" initial_value="2.8"/> <variable units="millisecond" public_interface="in" private_interface="out" name="time"/> <variable units="millivolt" public_interface="in" private_interface="out" name="V"/> <variable units="millivolt" public_interface="in" name="E_Na"/> <variable units="dimensionless" private_interface="in" name="m_infinity"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_NaP_calculation"> <eq/> <ci> i_NaP </ci> <apply> <times/> <ci> g_NaP </ci> <ci> m_infinity </ci> <apply> <minus/> <ci> V </ci> <ci> E_Na </ci> </apply> </apply> </apply> </math> </component> <component name="persistent_sodium_current_m_gate"> <variable units="dimensionless" public_interface="out" name="m_infinity"/> <variable units="millivolt" name="theta_m" initial_value="-40.0"/> <variable units="millivolt" name="sigma_m" initial_value="-6.0"/> <variable units="millivolt" public_interface="in" name="V"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="persistent_sodium_current_m_gate_m_infinity_calculation"> <eq/> <ci> m_infinity </ci> <apply> <divide/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <plus/> <cn cellml:units="dimensionless"> 1.0 </cn> <apply> <exp/> <apply> <divide/> <apply> <minus/> <ci> V </ci> <ci> theta_m </ci> </apply> <ci> sigma_m </ci> </apply> </apply> </apply> </apply> </apply> </math> </component> <component name="leakage_current"> <variable units="picoA" public_interface="out" name="i_L"/> <variable units="nanoS" name="g_L" initial_value="2.8"/> <variable units="millivolt" name="E_L" initial_value="-50.0"/> <variable units="millivolt" public_interface="in" name="V"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_L_calculation"> <eq/> <ci> i_L </ci> <apply> <times/> <ci> g_L </ci> <apply> <minus/> <ci> V </ci> <ci> E_L </ci> </apply> </apply> </apply> </math> </component> <component name="tonic_current"> <variable units="picoA" public_interface="out" name="i_tonic_e"/> <variable units="nanoS" name="g_tonic_e" initial_value="0.0"/> <variable units="millivolt" name="E_syn_e" initial_value="0.0"/> <variable units="millivolt" public_interface="in" name="V"/> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply id="i_tonic_e_calculation"> <eq/> <ci> i_tonic_e </ci> <apply> <times/> <ci> g_tonic_e </ci> <apply> <minus/> <ci> V </ci> <ci> E_syn_e </ci> </apply> </apply> </apply> </math> </component> <group> <relationship_ref relationship="encapsulation"/> <component_ref component="fast_sodium_current"> <component_ref component="fast_sodium_current_m_gate"/> <component_ref component="fast_sodium_current_n_gate"/> </component_ref> <component_ref component="potassium_current"> <component_ref component="potassium_current_n_gate"/> </component_ref> <component_ref component="slow_potassium_current"> <component_ref component="slow_potassium_current_k_gate"/> </component_ref> <component_ref component="persistent_sodium_current"> <component_ref component="persistent_sodium_current_m_gate"/> </component_ref> </group> <connection> <map_components component_2="environment" component_1="membrane"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="environment" component_1="fast_sodium_current"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="environment" component_1="potassium_current"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="environment" component_1="slow_potassium_current"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="environment" component_1="persistent_sodium_current"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="membrane" component_1="fast_sodium_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_Na" variable_1="i_Na"/> </connection> <connection> <map_components component_2="membrane" component_1="potassium_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_K" variable_1="i_K"/> </connection> <connection> <map_components component_2="membrane" component_1="slow_potassium_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_KS" variable_1="i_KS"/> </connection> <connection> <map_components component_2="membrane" component_1="persistent_sodium_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_NaP" variable_1="i_NaP"/> </connection> <connection> <map_components component_2="membrane" component_1="leakage_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_L" variable_1="i_L"/> </connection> <connection> <map_components component_2="membrane" component_1="tonic_current"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="i_tonic_e" variable_1="i_tonic_e"/> </connection> <connection> <map_components component_2="persistent_sodium_current" component_1="fast_sodium_current"/> <map_variables variable_2="E_Na" variable_1="E_Na"/> </connection> <connection> <map_components component_2="potassium_current" component_1="slow_potassium_current"/> <map_variables variable_2="E_K" variable_1="E_K"/> </connection> <connection> <map_components component_2="fast_sodium_current_m_gate" component_1="fast_sodium_current"/> <map_variables variable_2="m_infinity" variable_1="m_infinity"/> <map_variables variable_2="V" variable_1="V"/> </connection> <connection> <map_components component_2="fast_sodium_current_n_gate" component_1="fast_sodium_current"/> <map_variables variable_2="n" variable_1="n"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="potassium_current_n_gate" component_1="potassium_current"/> <map_variables variable_2="n" variable_1="n"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="slow_potassium_current_k_gate" component_1="slow_potassium_current"/> <map_variables variable_2="k" variable_1="k"/> <map_variables variable_2="V" variable_1="V"/> <map_variables variable_2="time" variable_1="time"/> </connection> <connection> <map_components component_2="persistent_sodium_current_m_gate" component_1="persistent_sodium_current"/> <map_variables variable_2="m_infinity" variable_1="m_infinity"/> <map_variables variable_2="V" variable_1="V"/> </connection> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#"> <rdf:Description rdf:about=""> <dc:title>Models of Respiratory Rhythm Generation in the Pre-Botzinger Complex. I. Bursting Pacemaker Neurons: model 2 (which includes a slow potassium current)</dc:title> <dc:creator rdf:parseType="Resource"> <vCard:N rdf:parseType="Resource"> <vCard:Family>Lloyd</vCard:Family> <vCard:Given>Catherine</vCard:Given> <vCard:Other>May</vCard:Other> </vCard:N> <vCard:EMAIL rdf:parseType="Resource"> <rdf:value>c.lloyd@auckland.ac.nz</rdf:value> <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/> </vCard:EMAIL> <vCard:ORG rdf:parseType="Resource"> <vCard:Orgname>The University of Auckland</vCard:Orgname> <vCard:Orgunit>Auckland Bioengineering Institute</vCard:Orgunit> </vCard:ORG> </dc:creator> </rdf:Description> <rdf:Description rdf:about="#butera_1999"> <bqs:reference rdf:parseType="Resource"> <dc:subject rdf:parseType="Resource"> <bqs:subject_type>keyword</bqs:subject_type> <rdf:value> <rdf:Bag> <rdf:li>respiratory</rdf:li> <rdf:li>electrophysiology</rdf:li> <rdf:li>central pattern generator</rdf:li> <rdf:li>neuron</rdf:li> <rdf:li>neurobiology</rdf:li> </rdf:Bag> </rdf:value> </dc:subject> </bqs:reference> <bqs:reference rdf:parseType="Resource"> <bqs:Pubmed_id>10400966</bqs:Pubmed_id> <bqs:JournalArticle rdf:parseType="Resource"> <dc:creator> <rdf:Seq> <rdf:li rdf:parseType="Resource"> <bqs:Person rdf:parseType="Resource"> <vCard:N rdf:parseType="Resource"> <vCard:Family>Butera</vCard:Family> <vCard:Given>Robert</vCard:Given> <vCard:Other>J</vCard:Other> </vCard:N> </bqs:Person> </rdf:li> <rdf:li rdf:parseType="Resource"> <bqs:Person rdf:parseType="Resource"> <vCard:N rdf:parseType="Resource"> <vCard:Family>Rinzel</vCard:Family> <vCard:Given>John</vCard:Given> </vCard:N> </bqs:Person> </rdf:li> <rdf:li rdf:parseType="Resource"> <bqs:Person rdf:parseType="Resource"> <vCard:N rdf:parseType="Resource"> <vCard:Given>Jeffrey</vCard:Given> <vCard:Family>Smith</vCard:Family> <vCard:Other>C</vCard:Other> </vCard:N> </bqs:Person> </rdf:li> </rdf:Seq> </dc:creator> <dc:title> Models of Respiratory Rhythm Generation in the Pre-Botzinger Complex. I. Bursting Pacemaker Neurons </dc:title> <dcterms:issued rdf:parseType="Resource"> <dcterms:W3CDTF>1999-07</dcterms:W3CDTF> </dcterms:issued> <bqs:Journal rdf:parseType="Resource"> <dc:title>Journal of Neurophysiology</dc:title> </bqs:Journal> <bqs:volume>81</bqs:volume> <bqs:first_page>382</bqs:first_page> <bqs:last_page>397</bqs:last_page> </bqs:JournalArticle> </bqs:reference> </rdf:Description> </rdf:RDF> </model>