# Kuznetsova and Deth, JCN, 2007 # 10-cell model: 8 E cells (Ve1, Ve2, ...Ve8) and 2 I (Vi1, Vi2) cells # only EE neighbours are connected, all E to I # variables: V-voltage, R-K channel, C-Ca channel, H- Ca dependent K chanel, S,F - synapse # different init condit init Ve1=-0.75 Ve2=-0.745 Ve3=-0.73 Ve4=-0.74 Ve5=-0.72 Ve6=-0.735 Ve7=-0.71 Ve8=-0.715 init Vi1=-0.75 Vi1=-0.71 init Re[1...8]=0.26 init Ce[1...8]=0.1 init He[1...8]=0.1 init Ri[1...2]=0.26 init Ci[1...2]=0.1 par Ie=0.6 #continuos input in all E cells, canceled in I cells par GCe=0.1, GCi=0.25 par GHe=4.0 par TRe[1]=4.0 par TRe[2]=4.1 par TRe[3]=4.3 par TRe[4]=4.1 par TRe[5]=4.2 par TRe[6]=4.35 par TRe[7]=4.4 par TRe[8]=4.05 # this is time constant for K channel in E cells, it is varied from 6 to 2 par GSee=3. #6/2, 3 par GSei=1.5 #6/4 par GSi=3. #from I to E and I to I par TRi[1..2]=1.5 # the same for in I cells, usualy it is not varied par TSe=2., TSi=8. #par ESe=0, ESi=-0.75 #excit=0 inhib=-0.75 par W=-0.1 AlE=Se1+Se2+Se3+Se4+Se5+Se6+Se7+Se8 Fe1'=(1./TSe)*(-Fe1+heav(Ve1-W)) Se1'=(1./TSe)*(-Se1+Fe1) Fe2'=(1./TSe)*(-Fe2+heav(Ve2-W)) Se2'=(1./TSe)*(-Se2+Fe2) Fe3'=(1./TSe)*(-Fe3+heav(Ve3-W)) Se3'=(1./TSe)*(-Se3+Fe3) Fe4'=(1./TSe)*(-Fe4+heav(Ve4-W)) Se4'=(1./TSe)*(-Se4+Fe4) Fe5'=(1./TSe)*(-Fe5+heav(Ve5-W)) Se5'=(1./TSe)*(-Se5+Fe5) Fe6'=(1./TSe)*(-Fe6+heav(Ve6-W)) Se6'=(1./TSe)*(-Se6+Fe6) Fe7'=(1./TSe)*(-Fe7+heav(Ve7-W)) Se7'=(1./TSe)*(-Se7+Fe7) Fe8'=(1./TSe)*(-Fe8+heav(Ve8-W)) Se8'=(1./TSe)*(-Se8+Fe8) AlI=Si1+Si2 Fi1'=(1./TSi)*(-Fi1+heav(Vi1-W)) Si1'=(1./TSi)*(-Si1+Fi1) Fi2'=(1./TSi)*(-Fi2+heav(Vi2-W)) Si2'=(1./TSi)*(-Si2+Fi2) Ve1'=-Minf(Ve1)*(Ve1-0.5)-26.*Re1*(Ve1+0.95)-GCe*Ce1*(Ve1-1.2)-GHe*He1*(Ve1+0.95)-GSi*(Ve1+0.75)*AlI-GSee*(Ve1+0.0)*Se2+Ie Re1'=(1./TRe1)*(-Re1+Rinf(Ve1)) Ce1'=(1./14.)*(-Ce1+Cinf(Ve1)) He1'=(1./45.)*(-He1+3.*Ce1) Ve2'=-Minf(Ve2)*(Ve2-0.5)-26.*Re2*(Ve2+0.95)-GCe*Ce2*(Ve2-1.2)-GHe*He2*(Ve2+0.95)-GSi*(Ve2+0.75)*AlI-GSee*(Ve2+0.0)*(Se1+Se3)+Ie Re2'=(1./TRe2)*(-Re2+Rinf(Ve2)) Ce2'=(1./14.)*(-Ce2+Cinf(Ve2)) He2'=(1./45.)*(-He2+3.*Ce2) Ve3'=-Minf(Ve3)*(Ve3-0.5)-26.*Re3*(Ve3+0.95)-GCe*Ce3*(Ve3-1.2)-GHe*He3*(Ve3+0.95)-GSi*(Ve3+0.75)*AlI-GSee*(Ve3+0.0)*(Se2+Se4)+Ie Re3'=(1./TRe3)*(-Re3+Rinf(Ve3)) Ce3'=(1./14.)*(-Ce3+Cinf(Ve3)) He3'=(1./45.)*(-He3+3.*Ce3) Ve4'=-Minf(Ve4)*(Ve4-0.5)-26.*Re4*(Ve4+0.95)-GCe*Ce4*(Ve4-1.2)-GHe*He4*(Ve4+0.95)-GSi*(Ve4+0.75)*AlI-GSee*(Ve4+0.0)*(Se3+Se5)+Ie Re4'=(1./TRe4)*(-Re4+Rinf(Ve4)) Ce4'=(1./14.)*(-Ce4+Cinf(Ve4)) He4'=(1./45.)*(-He4+3.*Ce4) Ve5'=-Minf(Ve5)*(Ve5-0.5)-26.*Re5*(Ve5+0.95)-GCe*Ce5*(Ve5-1.2)-GHe*He5*(Ve5+0.95)-GSi*(Ve5+0.75)*AlI-GSee*(Ve5+0.0)*(Se4+Se6)+Ie Re5'=(1./TRe5)*(-Re5+Rinf(Ve5)) Ce5'=(1./14.)*(-Ce5+Cinf(Ve5)) He5'=(1./45.)*(-He5+3.*Ce5) Ve6'=-Minf(Ve6)*(Ve6-0.5)-26.*Re6*(Ve6+0.95)-GCe*Ce6*(Ve6-1.2)-GHe*He6*(Ve6+0.95)-GSi*(Ve6+0.75)*AlI-GSee*(Ve6+0.0)*(Se5+Se7)+Ie Re6'=(1./TRe6)*(-Re6+Rinf(Ve6)) Ce6'=(1./14.)*(-Ce6+Cinf(Ve6)) He6'=(1./45.)*(-He6+3.*Ce6) Ve7'=-Minf(Ve7)*(Ve7-0.5)-26.*Re7*(Ve7+0.95)-GCe*Ce7*(Ve7-1.2)-GHe*He7*(Ve7+0.95)-GSi*(Ve7+0.75)*AlI-GSee*(Ve7+0.0)*(Se6+Se8)+Ie Re7'=(1./TRe7)*(-Re7+Rinf(Ve7)) Ce7'=(1./14.)*(-Ce7+Cinf(Ve7)) He7'=(1./45.)*(-He7+3.*Ce7) Ve8'=-Minf(Ve8)*(Ve8-0.5)-26.*Re8*(Ve8+0.95)-GCe*Ce8*(Ve8-1.2)-GHe*He8*(Ve8+0.95)-GSi*(Ve8+0.75)*AlI-GSee*(Ve8+0.0)*Se7+Ie Re8'=(1./TRe8)*(-Re8+Rinf(Ve8)) Ce8'=(1./14.)*(-Ce8+Cinf(Ve8)) He8'=(1./45.)*(-He8+3.*Ce8) Vi1'=-Minf(Vi1)*(Vi1-0.5)-26.*Ri1*(Vi1+0.95)-GCi*Ci1*(Vi1-1.2)-GSi*(Vi1+0.75)*Si2-GSei*(Vi1-0.0)*AlE Ri1'=(1./TRi1)*(-Ri1+Rinf(Vi1)) Ci1'=(1./14.)*(-Ci1+Cinf(Vi1)) Vi2'=-Minf(Vi2)*(Vi2-0.5)-26.*Ri2*(Vi2+0.95)-GCi*Ci2*(Vi2-1.2)-GSi*(Vi2+0.75)*Si1-GSei*(Vi2-0.0)*AlE Ri2'=(1./TRi2)*(-Ri2+Rinf(Vi2)) Ci2'=(1./14.)*(-Ci2+Cinf(Vi2)) Cinf(V)=8.*(V+0.725)^2 Minf(V)=17.8+47.6*V+33.8*V*V Rinf(V)=1.24+3.7*V+3.2*V*V aux n=(Ve1+Ve2+Ve3+Ve4+Ve5+Ve6+Ve7+Ve8)/8. #if(Ve1-W>0)then(Q(Ve1-W)=1)else(Q(Ve1-W)=0) @ METHOD=stiff, TOLERANCE=.00001 @ MAXSTOR=400000, TOTAL=1000, XP=t,YP=n, BELL=0 @ xmin=0.0,xmax=1000,ymin=-1,ymax=0.5 @ DT=0.01, xlo=0.0,ylo=-1.0,xhi=1000,yhi=0.5,bound=30000 done