The parameters used in 'LGNcircuit' are related to the model in the paper 'Feedback and feedforward contributions to temporal signal processing in the lateral geniculate nucleus' as follows:

- eta_ffi η_{ffi}
- tau_rg τ_{rq}
- tau_rig τ_{rig}
- Delta _rig Δ _{rig}
- $I_rON \lambda_r^{ON}$
- w_fbON w_{fb}ON
- w_fbOFF w_{fb}OFFx
- tau_rc τ_{rc}
- Delta _fb Δ _{fb}
- I_cON λ_cON
- I_cOFF λ_c^{OFF}

Here, $w_{fb}^{ON/OFFx} = w_{cr}^{ON/OFFx} \ w_{rc}^{ON/OFFx}$ and $w_{cr}^{ON/OFFx}$ is set to unity, hence, setting the value for $w_{fb}^{ON/OFFx}$ corresponds to setting the value for $w_{rc}^{ON/OFFx}$. Additionally, $\Delta_{fb} = \Delta_{cr}$ is used. These choices only affect the magnitude and latency of the plotted cortical response, not the LGN response.

Default values are set quite arbitrarily, and the I _rON value is set quite low, in order to see the LGN response without rectification in the default case.