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Abstract. Compartmental models of dendrites are the most widely used tool for investigating their electrical
behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the
membrane potential at the centre of the segment represented by the compartment. All input to that segment,
independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the
compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a
segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of
this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new
and traditional approaches to compartmental modelling use the same number of locations at which the membrane
potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the
solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved
by the latter in the presence of point process input.
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1. Introduction24

Compartmental models have become important tools25
for investigating the behaviour of neurons to the extent26
that a number of packages exist to facilitate their im-27
plementation (e.g. Hines and Carnevale, 1997; Bower28
and Beeman, 1997). These models are constructed by29
replacing the continuum description of a neuron by a30

∗To whom correspondence should be addressed.

discrete description of the neuron formed by partition- 31
ing it into contiguous segments which interact with 32
their nearest neighbours across common boundaries. 33
A compartment is a mathematical representation of the 34
morphological and biophysical properties of a segment, 35
and a compartmental model is the collection of all com- 36
partments along with a specification of their connectiv- 37
ity. The efficacy of any formulation of a compartmental 38
model depends on the faithfulness with which it cap- 39
tures the behaviour of the neuron that it represents, and 40
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it is in this respect that the new compartmental model41
developed in this article will be seen to perform bet-42
ter than existing compartmental models with a similar43
level of complexity.44

The traditional approach to compartmental mod-45
elling (e.g., Rall, 1964; Segev and Burke, 1998) assigns46
a single potential to a compartment. This potential takes47
its value through an association with the average value48
of the current density crossing the membrane of the49
segment, and in a traditional compartmental model is50
approximated by the membrane potential at the cen-51
tre of the segment. However a compartment of this52
type is aesthetically unsatisfactory since it cannot act53
as the fundamental unit in the construction of a model54
dendrite, first, because two compartments are required55
to define axial current flow, and second, because half56
compartments are required to represent branch points57
and dendritic terminals. On the other hand, the new58
approach to compartmental modelling assigns two po-59
tentials to a compartment—one to represent the mem-60
brane potential at the proximal boundary of the segment61
and the other to represent the membrane potential at its62
distal boundary. The new compartment can exist as an63
independent entity and can therefore function as the64
basic building block of a multi-compartmental neu-65
ronal model. Another significant difference between66
a traditional compartmental model and the new com-67
partmental model lies in the novel procedure for the68
treatment of transmembrane current. In a traditional69
compartmental model the influence of transmembrane70
current on a segment is approximated by requiring these71
currents to act at the centre of the segment with the sin-72
gle potential assigned to the compartment representing73
the segment, and consequently these models do not re-74
flect accurately the influence of the precise location of75
point process input1 on the segment. By contrast, the76
formulation of the new compartmental model makes77
it more responsive to the influence of the location of78
point process input to a segment, and in the presence of79
these inputs, is shown to be an order of magnitude more80
accurate that a comparable traditional compartmental81
model.82

The accuracy of the new and traditional approaches83
to compartmental modelling is first assessed by calcu-84
lating the error in the somal potential of a test neuron85
when each approach is used to calculate this potential86
ten milliseconds after the initiation of large scale point87
current input. In a second comparison, the accuracy88
of the two approaches is assessed by comparing the89
statistics of the spike train output generated by each90

type of compartmental model of the test neuron when 91
subjected to large scale synaptic input. 92

2. Structure of Compartmental Models 93

We are concerned with compartmental models of den- 94
drites. In this context, the fundamental morphological 95
unit is the dendritic section, defined to be the length 96
of dendrite connecting one branch point to a neigh- 97
bouring branch point, to the soma or to a terminal. 98
Compartmental modelling begins by subdividing each 99
dendritic section into segments which are typically re- 100
garded as uniform circular cylinders (e.g. Segev and 101
Burke, 1998) or tapered circular cylinders (Hines and 102
Carnevale, 1997). In the new approach to compartmen- 103
tal modelling, the known membrane potentials at the 104
ends of a segment (rather than its centre) provide the 105
basis for the development of a set of rules which enable 106
the influence of precisely located point process input to 107
be partitioned between the axial current at the proximal 108
and distal boundaries of the segment. The mathematical 109
equations of the compartmental model are constructed 110
by enforcing conservation of axial current at segment 111
boundaries, dendritic branch points and dendritic ter- 112
minals. 113

2.1. Model Accuracy and the Partitioning of Point 114
Process Input 115

The benefit in accuracy gained by taking into account 116
the precise placement of point process input on a den- 117
drite is best appreciated by considering how, in the ab- 118
sence of this facility, small variations in the location of 119
segment boundaries exert a large influence on the so- 120
lution of a traditional compartmental model. Consider, 121
for example, a point process close to a segment bound- 122
ary. A small change in the position of that boundary 123
may move the assigned location of this point process 124
from the centre of one segment to that of an adjacent 125
segment. With respect to a traditional compartmental 126
model, the location of this point process is therefore de- 127
termined only to an accuracy of half a segment length, 128
and this indeterminacy will in turn generate a model 129
solution that is particularly sensitive to segment bound- 130
aries. Of course, with a small number of point process 131
input, this problem can be avoided in the traditional ap- 132
proach to compartmental modelling by arranging that 133
only one point process falls on a segment, and that the 134
location of this input coincides with the centre of the
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segment. However, this strategy is not feasible when135
dealing with large scale point process input. What is136
required is a procedure which describes the effect of137
point process input on a dendritic section in a way that138
is largely insensitive to how that section is represented139
by segments.140

The primary sources of error in the construction of141
a compartmental model are the well-documented ef-142
fect of discretising a continuous dendrite, and the less143
well-documented error introduced by the placement of144
point process input on the dendrite. In the traditional145
approach based on a compartmental model with n com-146
partments, the first type of error is O(1/n2) (by analogy147
with the finite difference representation of derivatives),148
but it is not widely recognised that the second type of149
error is O(1/n) whenever the input does not naturally150
fall at the centre of segments. Since the accuracy of151
any model is governed by the least accurate contribu-152
tion to the model, it is clear that in practice the tra-153
ditional approach to compartmental modelling in the154
presence of point current and synaptic input is O(1/n)155
accurate. This theoretical observation is supported by156
the simulation studies of Sections 5.2 and 5.3, and by157
an example provided for us by an anonymous reviewer.158
This reviewer used the simulator NEURON to calculate159
the somal potential of the test neuron shown in Fig. 3160
10 msec after the initiation of point current input. The161
results of this calculation are shown in Table 1.162

The results shown in the middle panel of Table 1163
(traditional compartmental model) are based on plac-164
ing the exogenous point current input at the centre of165

Table 1. The somal potential of the test neuron shown in Fig. 3 is given 10 msec after
the initiation of point current input. The calculation is done for nine different levels of
discretisation and two methods for the placement of exogenous point current input.

Point current input at Point current input
centre of nearest segment divided proportionatelySegments

per branch
section V (mV) �V (mV) V (mV) �V (mV)

1 10.2355 10.5692

2 10.2311 (−4.4616 × 10−3) 10.3357 (−2.3352 × 10−1)

4 10.2367 (5.6256 × 10−3) 10.2725 (−6.3143 × 10−2)

8 10.2333 (−3.4428 × 10−3) 10.2556 (−1.6908 × 10−2)

16 10.2470 (1.3754 × 10−2) 10.2519 (−3.6550 × 10−3)

32 10.2509 (3.8793 × 10−3) 10.2508 (−1.1320 × 10−3)

64 10.2521 (1.1874 × 10−3) 10.2506 (−2.4666 × 10−4)

128 10.2530 (8.8765 × 10−4) 10.2505 (−6.3146 × 10−5)

256 10.2511 (−1.9053 × 10−3) 10.2505 (−1.5181 × 10−5)

its nearest segment, whereas the results shown in the 166
right hand panel (modified compartmental model) are 167
based on the division of the point current input be- 168
tween the centres of adjacent compartments in propor- 169
tion to the conductance between the location of the 170
input and these centres. Several important differences 171
between the two procedures for allocating the loca- 172
tion of point current input are evident from the results 173
set out in Table 1. The results based on dividing the 174
current proportionately between the centres of neigh- 175
bouring compartments converge smoothly and more 176
rapidly to the true potential than those based on the 177
traditional approach in which the current is placed at 178
the centre of the compartment. An extrapolation proce- 179
dure demonstrates that the potentials generated by the 180
modified approach converge quadratically to the true 181
somal potential as the number of compartments is in- 182
creased. Moreover, not only does the solution following 183
the traditional approach (middle panel) converge to the 184
true potential more slowly than the modified approach 185
(right hand panel), the former appears to oscillate as it 186
approaches this potential. Finally, further evidence for 187
the superior convergence of the modified approach is 188
clear from the observation that the best estimate of the 189
true potential using the traditional approach with 256 190
segments per branch section is achieved in the modified 191
approach with approximately 28 segments per branch 192
section. It will be seen in Section 4.1 that the procedure 193
used by the reviewer to partition point current input is 194
a special case of the general procedure for partitioning 195
point process input. By contrast with the traditional
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approach, the new approach to compartmental mod-196
elling describes the influence of point process input to197
an accuracy of O(1/n2), and therefore one would an-198
ticipate that it does not degrade the overall accuracy199
of the model. The validity of this assertion is demon-200
strated through the simulation studies in Sections 5.2201
and 5.3.202

3. Distributed and Point Process Input203
to a Segment204

In general, segments receive distributed and point pro-205
cess sources of input each of which require a differ-206
ent mathematical treatment. The current supplied by207
distributed input such as intrinsic voltage-dependent208
current or capacitative current is proportional to the209
surface area of the segment on which it acts, whereas210
the current supplied to a segment at a synapse or by an211
exogenous point input is independent of the size of the212
segment. An implicit assumption of a compartmental213
model is that distributed current input to a segment is214
small by comparison with axial current flowing along215
the segment.216

To appreciate why this assumption is reasonable,217
consider a cylindrical dendritic segment of radius r218
(cm), length h (cm) and with membrane of constant219
conductance gM (mS/cm2). Suppose that axoplasm has220
constant conductance gA (mS/cm) and that a poten-221
tial difference V (mV) exists between the segment222
boundaries, then the axial current along the segment223
is IA = πr2gAV/h (µA) and the total distributed cur-224
rent crossing the membrane of the segment is IM =225
2πrhgM (V/2). The ratio of the distributed current to226
the axial current is therefore227

Distributed current

Axial current
= IM

IA
= πrhgM V

πr2gA (V/h)

= h2gM

rgA
=

(
h

r

)2 rgM

gA
. (1)

For a typical dendritic segment rgM/gA is small (say228
≈ 10−5), and therefore distributed current acting on a229
segment is small by comparison with axial current for230
“short” segments. On the other hand, segments several231
orders of magnitude longer than their radius can be ex-232
pected to have distributed and axial currents of similar233
magnitude. An important property of a compartmen-234
tal model is that segments are not excessively long by235
comparison with their radius (However, see Segev and236
Burke, 1998, Fig. 3b). In the treatment of distributed237

current, the development of the new compartmental 238
model makes explicit use of the assumption that dis- 239
tributed current is much smaller than axial current. This 240
assumption may not be valid for point process input, 241
and will not be made for the treatment of this type of 242
input in the new approach to compartmental modelling. 243

3.1. Axial Current in the Absence 244
of Transmembrane Current 245

The importance of the conclusion from Section 3 is that 246
distributed transmembrane current acting on short seg- 247
ments is small compared with axial current, and may be 248
neglected in a first approximation of the distribution of 249
membrane potential on a segment. Thus in the absence 250
of point process input, the axial current in a segment is 251
well approximated from the potential drop across the 252
segment. In the light of this approximation, consider 253
Fig. 1 which illustrates a dendritic segment of length h 254
in which λ ∈ [0, 1] is the fractional distance of a point 255
of the segment from its proximal end (λ = 0). Let rP 256
and rD be the radii of the segment at its proximal and 257
distal boundaries respectively, let VP (t) and VD(t) be 258
the membrane potentials at these boundaries and let 259
IP D be the axial current in the segment in the absence 260
of transmembrane current. 261

The membrane of the segment in Fig. 1 is formed 262
by rotating the straight line PD about the axis of the 263
dendrite to form the frustum of a cone of radius 264

r (λ) = (1 − λ)rP + λrD, λ ∈ [0, 1] . (2)

Assuming that the segment is filled with axoplasm of 265
constant conductance gA and that no current crosses 266

Figure 1. A segment of length h is illustrated. In the absence of
transmembrane current, membrane potentials VP and VD at the prox-
imal and distal boundaries of the segment generate axial current IP D .
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its membrane, then the relationship between VP ,267
VD and IP D can be constructed by integrating the268
defining equation of axial current, namely IP D =269
−gA A(x) dV/dx , from the proximal to the distal270
boundary of a segment. For the conical segment illus-271
trated in Fig. 1, A(x) = πr2(λ), dV/dx = h−1 dV/dλ272
and the equation to be integrated is273

IP D = −gAπ

h
[(1 − λ)rP + λrD]2 dV

dλ

with boundary conditions V (0) = VP and V (1) = VD .274
The result of this calculation is that the the axial current275
IP D and the potentials VP and VD are connected by the276
formula277

IP D = πgArPrD

h
( VP − VD) (3)

in the absence of transmembrane current. Moreover,278
the potential at the point λ is279

V (λ) = VP (1 − λ) rP + VDλrD

(1 − λ)rP + λrD
. (4)

Note that Eq. (4) is valid for sections with taper and in280
the absence of taper will lead to a membrane potential281
which varies linearly along the length of a segment.282
The subsequent development of the new compartmen-283
tal model assumes that sections may taper unless stated284
specifically that the section is uniform.285

3.2. Partitioning Rule for Transmembrane Current286

In compartmental modelling the effect of transmem-287
brane current is represented in the model by input288
at points, or nodes, at which the membrane potential289
is known. In a traditional approach to compartmental290
modelling, these nodes are at the centre of segments,291
whereas in the new approach they are located at the292
boundaries of segments. The new approach partitions293
the effect of input at any location between the nodes294
at the proximal and distal boundaries of the segment.295
This procedure ensures that the solution of the com-296
partmental model is insensitive to small changes in297
the location of segment boundaries because changes298
in these boundaries also affect how the input is parti-299
tioned between nodes. In the mathematical description300
of the new compartmental model, the effect of input to301
a segment is treated as perturbations IP and ID to the302
axial current IP D at the proximal and distal boundaries303
of a segment. Axial current IP D + IP is assumed to304

leave the proximal boundary of a segment in the direc- 305
tion of its distal boundary, while axial current IP D + ID 306
is assumed to arrive at the distal boundary of a segment 307
from the direction of its proximal boundary. The per- 308
turbations IP and ID must satisfy the conservation of 309
current condition 310

(IP D + ID) − (IP D + IP ) + h
∫ 1

0
J (λ, t) dλ

= 0 → IP − ID = h
∫ 1

0
J (λ, t)dλ (5)

where J (λ, t) denotes transmembrane current. The task 311
is to construct expressions for IP and ID that satisfy 312
(5) for all constitutive forms for the current density 313
J (λ, t). The new approach to compartmental modelling 314
requires a procedure or rule for partitioning transmem- 315
brane current between the proximal and distal bound- 316
aries of a segment. The rule used in this article is that 317
transmembrane current flow to a boundary of a segment 318
is proportional to the axial conductance of the segment 319
lying between the point of application of the current 320
and that boundary. If G P (λ) is the axial conductance 321
of the portion of segment lying between the point λ 322
and the proximal boundary of the segment, and G D(λ) 323
is the axial conductance of the portion of segment ly- 324
ing between the point λ and the distal boundary of the 325
segment, then 326

G P (λ) = πgArPr (λ)

λh
, G D(λ) = πgArDr (λ)

(1 − λ)h
(6)

and the rule for partitioning transmembrane current 327
leads to the expressions 328

IP = h
∫ 1

0

G P J (λ, t) dλ

G P + G D

= h
∫ 1

0

(1 − λ) rP J (λ, t) dλ

(1 − λ) rP + λ rD
,

−ID = h
∫ 1

0

G D J (λ, t) dλ

G P + G D

= h
∫ 1

0

λ rD J (λ, t) dλ

(1 − λ) rP + λ rD
. (7)

Clearly these expressions satisfy identically condition 329
(5) for the conservation of current. 330
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3.3. Specification of Transmembrane Current331

Transmembrane current is usually assumed to consist332
of four distinct components: capacitative current, in-333
trinsic voltage-dependent current and point process in-334
put which is subdivided into synaptic current and ex-335
ogenous point current. Total transmembrane current is336
represented by337

∫
2πr cM

∂V

∂t
dx +

∫
2πr JI V DC (V ) dx

+
∑

JSY N (Vsyn) +
∑

IE X (8)

where the integrals and summations are taken over the338
length of a segment. In this expression cM (µF/cm2)339
is the specific capacitance of the segment membrane,340
V (x, t) is the distribution of membrane potential at time341
t (msec), JI V DC (V ) (µA/cm2) is the density of trans-342
membrane current due to intrinsic voltage-dependent343
channel activity, JSY N (Vsyn) (µA) describes synaptic344
input and IE X (µA) describes exogenous input. Al-345
though the specific capacitance of dendritic membrane346
is normally taken to be constant in neuronal modelling,347
it will be treated here as a function of position to show348
how transmembrane current of this type may be in-349
corporated into the new compartmental model. For a350
segment of length h, the expression for J (λ, t) corre-351
sponding to formula (8) is352

h J (λ, t) = 2πhr (λ)cM (λ)
∂V (λ, t)

∂t
+ 2πhr (λ)JI V DC (V (λ, t))

+
∑

k

JSY N (Vsyn)δ(λ − λk)

+
∑

k

IE X (t)δ(λ − λk) (9)

where λk denotes the relative location of the kth353
synapse or exogenous input with respect to the proxi-354
mal boundary of the segment (λ = 0).355

4. The Partitioning of Transmembrane Current356

Further progress requires expressions for IP and ID357
in terms of the biophysical and morphological proper-358
ties of the segment and the membrane potentials at its359
proximal and distal boundaries. Each component of the360
transmembrane current (9) is examined separately.361

4.1. Point Processes 362

We model synaptic current by the conventional con- 363
stitutive equation I = g(t)(V − E) where E is the 364
reversal potential associated with the synapse and g(t) 365
is the time course of the synaptic conductance. Exoge- 366
nous point current input takes the form I = I(t) where 367
I(t) is a known function of t . Suppose that λ1, . . . , λn 368
are sites of point input I1, . . . , In to the segment, then 369
it follows from expressions (7) that the contributions 370
made to IP and ID from these currents are 371

IP =
n∑

k=1

rP

rk
(1 − λk)Ik , −ID =

n∑
k=1

rD

rk
λkIk (10)

where rk = (1 − λk) rP + λk rD . In the special case of 372
exogenous input alone,Ik = Ik(t) and expressions (10) 373
give the exact partitioning of this input. The procedure 374
used by the anonymous reviewer (see Section 2.1) is 375
an application of Eq. (10) to a uniform segment, that 376
is, 377

IP =
n∑

k=1

(1 − λk)Ik , −ID =
n∑

k=1

λk Ik . (11)

However, when synaptic input is present, expressions 378
(10) for I P and ID will contain the (unknown) mem- 379
brane potentials at the synapses, and its use will there- 380
fore require these potentials to be estimated in terms of 381
known functions and the potentials at the proximal and 382
distal boundaries of the segment. 383

One obvious way to estimate the potential at the site 384
of a synapse is to use the potential distribution (4). 385
However, the efficacy of this approximation relies on 386
the validity of the assumption that transmembrane cur- 387
rent is negligible by comparison with axial current. In 388
the presence of synaptic input, transmembrane current 389
need not be negligible by comparison with axial cur- 390
rent, and so the partitioning rule must be developed to 391
include this possibility. 392

4.2. The Partitioning Rule in the Presence 393
of Synaptic Input 394

The partitioning of point process input set out in 395
Section 4.1 is developed by noting that this rule may 396
be applied to the division of transmembrane current 397
between nearest-neighbour sites of a point input, and 398
that the proximal and distal boundaries of the segment 399
are simply special cases of these sites. This application 400
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Figure 2. Configuration of point input to a dendritic segment of length h. Here Ik = gk (t)(Vk − Ek ) in the case of synaptic input at λk or
Ik = Ik (t) if the input is an exogenous point current.

of the partitioning rule is equivalent to considering the401
balance between axial current and point current at each402
site of input ignoring the influence of distributed trans-403
membrane current between sites. The implementation404
of the partitioning rule for general point process input405
is done in two stages. The first stage of the discussion406
focusses on the construction of the equations satisfied407
by the potentials at the sites of the point input, and408
the second stage of the discussion describes how these409
equations may be solved numerically and is contained410
in appendix one.411

4.2.1. Equations for the Potentials. In general, the412
locations of point process input can be taken to divide413
a segment into sub-segments, defined to be the lengths414
of the segment between the locations of these inputs.415
Figure 2 is a schematic representation of a segment of416
length h illustrating the relative locations λ1, . . . , λn of417
n point inputs I1, . . . , In on a segment. Suppose axial418
current Ik flows to the point λk from the point λk−1 and419
that Vk is the potential at the point λk .420

Since distributed current alone can flow across the421
membrane of a sub-segment, Equation (3) may be used422
to describe the axial current in the k-th sub-segment by423
replacing VP and rP with Vk−1 and rk−1 respectively,424
by replacing VD and rD with Vk and rk respectively,425
and by replacing h with h(λk − λk−1), the length of426
the sub-segment. If V1, . . . , Vn are the potentials at the427
points λ1, . . . , λn at which point process input is ap-428
plied, then the axial currents I1, . . . , In+1 are related to429
the potentials V1, . . . , Vn by the equations430

Ik = πgArk−1 rk

h(λk − λk−1)
(Vk−1 − Vk),

k = 1, . . . , (n + 1) (12)

where it is understood that λ0 = 0, λn+1 = 1, r0 = rP ,431
rn+1 = rD , V0 = VP and Vn+1 = VD . Equation (12)432
are rearranged in the form433

Vk−1 − Vk = h

πgA

(λk − λk−1)

rk−1 rk
Ik ,

k = 1, . . . , (n + 1) .

By recognising that Vk − VP is the sum of the po- 434
tential differences across the first k sub-segments, 435
it follows immediately from the previous equation 436
that 437

Vk = VP − h

πgA

k∑
j=1

(λ j − λ j−1)

r j−1 r j
I j ,

k = 1, . . . , n . (13)

If λk is the point of application of an exogenous input 438
of strength Ik(t) then 439

Ik+1 + Ik(t) = Ik . (14)

On the other hand, if there is a synapse at λk , then Ik = 440
gk(t)(Vk −Ek) and conservation of current requires that 441

Ik+1 + gk(Vk − Ek) = Ik . (15)

Formula (13) for Vk is now used to rewrite Eq. (15) in 442
terms of axial currents to get 443

Ik − Ik+1 + gkh

πgA

k∑
j=1

(λ j − λ j−1)

r j−1 r j
I j

= gk( VP − Ek ), k = 1, . . . , n . (16)

Thus conservation of current at the points λ1, · · · , λn 444
gives rise to n equations for the (n + 1) currents 445
I1, . . . , In+1. In order to complete the system of equa- 446
tions specifying I1, . . . , In+1, note that the potentials at 447
the proximal and distal boundaries of the segment are 448
known, and that this condition constrains the currents 449
I1, . . . , In+1 to satisfy

450

n+1∑
j=1

(λ j − λ j−1)rPrD

r j−1 r j
I j = πgArPrD

h
(VP − VD) .(17)

Equation (17) is obtained from Eq. (13) by assert- 451
ing that Vn+1 = VD . Note also that Eq. (17) has been 452
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multiplied by the factor rPrD for the benefit of numer-453
ical work to make the coefficients of the currents in the454
rescaled equation order one. To summarise, the cur-455
rents I1, . . . In+1 are determined by solving the linear456
equations457

Ik − Ik+1 = Ik(t)

Ik − Ik+1 + gkh

πgA

k∑
j=1

(λ j − λ j−1)

r j−1 r j
I j

= gk(VP − Ek),


 k = 1, . . . , n

n+1∑
j=1

(λ j − λ j−1)rPrD

r j−1 r j
I j = πgArPrD

h
( VP − VD)

(18)

where the first equation is used if λk is the location458
of an exogenous point input and the second equation459
is used if λk is the location of a synapse. The follow-460
ing example illustrates an application of Eq. (18) to461
the case of a single synapse and a single exogenous462
input.463

Example. Consider a segment which receives synap-464
tic input of conductance g1(t) at λ1 and exogenous cur-465
rent I2(t) at λ2 where 0 < λ1 < λ2 < 1. This parti-466
tioning of the segment gives rise to three currents I1,467
I2 and I3. The determination of IP and ID will require468
expressions for I1 and I3 in terms of the known con-469
ductance g1(t), the known current I2(t), the geometry470
of the segment, and finally, the potentials VP and VD471
at the proximal and distal boundaries of the segment.472
The formulation of this problem will involve the cur-473
rent I2 as an auxiliary variable, but the solution for I2474
is not sought. It follows from Eq. (18) that I1, I2 and I3475
satisfy476

I1 − I2 + g1(t)h

πgA

(λ1 − λ0)

r0 r1
I1 = g1(t)( VP − E1),

I2 − I3 = I2(t), (19)

(λ1 − λ0)r0 r3

r0 r1
I1+ (λ2 − λ1)r0 r3

r1 r2
I2+ (λ3 − λ2)r0 r3

r2 r3
I3

= πgAr0 r3

h
( VP − VD).

The first Equation in (19) is Eq. (16) applied at the loca-477
tion of the synapse (λ = λ1), and the second equation478
in (19) is Eq. (14) applied at the location of the exoge-479
nous current (λ = λ2). The last equation in (19) is the480

the consistency condition expressed by Eq. (17). Equa- 481
tions (19) can be expressed in matrix form AX = B 482
where X = [ I1, I2, I3]T and

483484

A =




1 + g1(t)h
πgA

(λ1−λ0)
r0 r1

−1 0

0 1 −1

(λ1−λ0)r3
r1

(λ2−λ1)r0 r3
r1 r2

(λ3−λ2)r0
r2


 ,

B =




g1(t)(VP − E1)

I2(t)

πgAr0 r3

h (VP − VD)




.

It is a matter of careful algebra to show that the currents 485
I1 and I3 are given by the expressions

486487

I1 =
πgAr0 r3

h (VP − VD) + (1 − λ1) r0
r1

g1(t)(VP − E1) + I2(t)(1 − λ2) r0
r2

1 + λ1(1−λ1)hg1(t)

πgAr2
1

,

I3 =

πgAr0 r3

h

(
1 + λ1hg1(t)

πgAr0r1

)
(VP − VD) − λ1r3

r1
g1(t)(VP − E1)

− I2(t) r3
r2

(
λ2 + λ1(λ2−λ1)hg1(t)

πgAr2
1

)
1 + λ1(1−λ1)hg1(t)

πgAr2
1

.

(20)

Of course, the complexity of these expressions for 488
I1 and I3 is in part due to the fact that they com- 489
bine the axial current in the segment in the absence 490
of point input with the modification to this current 491
due to the presence of the synaptic input at λ = λ1 492
and the exogenous input at λ = λ2. The perturbations 493
IP = I1 − IP D and ID = I3 − IP D to the axial cur- 494
rent at the proximal and distal boundaries of the seg- 495
ment are now calculated from formulae (3) and (20) to 496
give 497

498

IP =
r0(1−λ1)

r1
g1(t)(ψ1−E1)+I2(t)(1−λ2) r0

r2

1+ λ1(1−λ1)hg1(t)

πgAr2
1

,

− ID

=
λ1r3

r1
g1(t)(ψ1−E1)+I2(t) r3

r2

[
λ2+ g1(t)hλ1(λ2−λ1)

πgAr2
1

]
1+ λ1(1−λ1)hg1(t)

πgAr2
1

.

(21)



P1: GIU

Journal of Computational Neuroscience SJNW253-03-192 May 14, 2005 4:1

UNCORRECTED
PROOF

Increased Computational Accuracy in Multi-Compartmental Cable Models 29

where ψ1 is the potential499

ψ1 = r0(1 − λ1)VP + r3λ1VD

r1
. (22)

It is clear from (4) that ψ1 would be the model potential500
at λ = λ1 in the absence of transmembrane current, and501
therefore g1(t)

(
ψ1 − E1

)
would be the transmembrane502

current supplied by the synapse at λ = λ1 assuming503
that this synaptic current is negligible by comparison504
with the axial current. Furthermore, if the common de-505
nominator of expressions (21) is treated as unity, then506
expressions (21) simplify to507

IP = r0(1 − λ1)

r1
g1(t)(ψ1 − E1) + I2(t)(1 − λ2)

r0

r2
,

(23)

− ID = λ1r3

r1
g1(t)(ψ1 − E1) + I2(t)

r3

r2
λ2 ,

which are identical to Eq. (10) with I1 = g1(t)( ψ1 −508
E1 ) and I2 = I(t). Expressions (23) are those that509
would follow from making the assumption that trans-510
membrane current is negligible by comparison with511
axial current in the presence of synaptic input. Con-512
sequently, the use of expressions (23) for IP and ID513
would overestimate the true strength of both the synap-514
tic and the exogenous input to a segment. In conclusion,515
synaptic and exogenous input do not act independently516
when a segment receives both types of point process517
input.518

The second stage of the analysis deals with the con-519
struction and numerical solution of the equations con-520
structed from the particular configuration of synapses521
and exogenous input, and is given in Appendix 1.522

4.3. Distributed Transmembrane Current523

All distributed transmembrane current is treated us-524
ing Eq. (7) with appropriate expressions for J (λ, t),525
and with occurrences of the membrane potential ap-526
proximated by expression (4). Capacitative current527
and intrinsic voltage-dependent current are considered528
separately.529

4.3.1. Capacitative Transmembrane Current. The530
component of capacitative current in (9) is estimated531
by approximating the true membrane potential along532

the segment by expression (4) to obtain 533

J cap(λ, t) = 2πcM (λ)r (λ)
dV (λ, t)

dt

= 2πcM (λ)

[
(1 − λ) rP

dVP

dt
+ λ rD

dVD

dt

]
.

(24)

It now follows from expressions (7) that the contribu- 534
tions made by capacitative transmembrane current to 535
IP and to ID are 536

I cap

P = 2π rP h

[
rP

dVP

dt

∫ 1

0

(1 − λ)2cM (λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ(1 − λ)cM (λ) dλ

(1 − λ) rP + λ rD

]
, (25)

−I cap

D = 2π rDh

[
rP

dVP

dt

∫ 1

0

λ(1 − λ)cM (λ) dλ

(1 − λ) rP + λ rD

+ rD
dVD

dt

∫ 1

0

λ2cM (λ) dλ

(1 − λ) rP + λ rD

]
.

If the compartment is a uniform cylinder with constant 537
specific membrane capacitance, the perturbations in ax- 538
ial current at the proximal and distal boundaries of the 539
segment may be computed by evaluating the integrals 540
in formulae (25) to get 541

I cap

P = C

6

[
2

dVP

dt
+ dVD

dt

]
,

−I cap

D = C

6

[
dVP

dt
+ 2

dVD

dt

]
(26)

where C is the total membrane capacitance of the seg- 542
ment. The calculation for tapered segments with non- 543
uniform membrane specific capacitance is presented in 544
Appendix 2. 545

4.3.2. Intrinsic Voltage-Dependent Transmembrane 546
Current. The construction of I cap

P and I cap

D for a mem- 547
brane with non-constant specific capacitance provides 548
the framework for treating intrinsic voltage-dependent 549
transmembrane current. For an ionic species α, this 550
current is usually described by the constitutive formula 551
J = gα(θ)(V − Eα) where V is the membrane poten- 552
tial, Eα is the reversal potential for species α and gα(θ) 553
is a membrane conductance which depends on a set 554
of auxiliary variables θ, for example, the probabilities 555
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m, n and h appearing in the Hodgkin-Huxley (1952)556
model.557

In the case of a passive membrane, the conductance558
gα(θ) takes a constant (but different) value for each559
species. The total transmembrane current density is ob-560
tained by summing the transmembrane current densi-561
ties of each ionic species to get562

J =
∑

α

gα(V − Eα) = gM (V − E) ,

gM =
∑

α

gα , E =
∑

α

gα

gM
Eα . (27)

Thus the constitutive equation for the transmembrane563
current density of a passive membrane is J = gM (V −564
E) where gM (mS/cm2) is the total membrane conduc-565
tance and E plays the role of a reversal potential. When566
the segment is a uniform cylinder with a membrane of567
constant conductance, the contributions to IP and ID568
mimic formulae (26) for capacitative current and are569
respectively570

I IVDC
P = G

6
[ 2(VP − E) + (VD − E)] ,

−I IVDC
D = G

6
[ (VP − E) + 2(VD − E)] (28)

where G is the total membrane conductance of the571
segment. The treatment of tapered segments with572
non-uniform membrane conductance is presented in573
Appendix 3.574

5. Comparison of the Traditional and New575
Approaches to Compartmental Modelling576

Two simulation studies are used to compare the perfor-577
mance of the traditional and new compartmental mod-578
els. These studies are based on a branched model neu-579
ron with known expression for the somal potential in re-580
sponse to large scale exogenous input (see Appendix 4).581
The first study examines the accuracy with which each582
type of compartmental model estimates this somal po-583
tential, and uses the NEURON simulator (Hines and584
Carnevale, 1997) as an example of a traditional com-585
partmental model. The second study assesses the ac-586
curacy of the two types of models by comparing the587
statistics of the spike train output generated by each588
model when the test neuron is subjected to large scale589
synaptic input. Here a traditional compartmental model590
developed by the authors is used. This model gave re-591
sults identical to those of NEURON in the first study.592

Finally, a time step of one microsecond is used in the 593
numerical integration of each compartmental model to 594
ensure that errors in temporal integration make no sig- 595
nificant contribution to the error in the calculation of 596
membrane potential. 597

5.1. The Test Neuron 598

One way to construct a branched test neuron with a 599
closed form solution for the somal potential is to choose 600
the radii and lengths of its sections such that the Rall 601
conditions for an equivalent cylinder are satisfied (Rall, 602
1964). These conditions require that the sum of the 603
three-halves power of the diameters of the child limbs 604
is equal to the three-halves power of the diameter of 605
the parent limb at any branch point, and that the total 606
electrotonic length from a branch point or the soma to 607
a dendritic tip is independent of path. The test neuron 608
illustrated in Fig. 3 satisfies these conditions. When the 609
Rall conditions are satisfied, the effect at the soma of 610
any configuration of input on the branched model of 611
the neuron is identical to the effect at the soma of the 612
unbranched equivalent cylinder with biophysical prop- 613
erties and configuration of input determined uniquely 614
from those of the original branched neuron (Lindsay 615
et al., 2003). 616

The high degree of accuracy used in the specifica- 617
tion of the dendritic radii and section lengths of the test 618
neuron is required to ensure that the equivalent cylin- 619
der is an adequate representation of the test neuron. 620
The membrane of the test neuron is assigned a specific 621
conductance of 0.091 mS/cm2 (gM ) and specific capac- 622
itance of 1.0 µF/cm2 (cM ), and has axoplasm of con- 623
ductance 14.286 mS/cm (gA). With these biophysical 624
properties, the equivalent cylinder has length one elec- 625
trotonic unit. The soma of the test neuron is assumed 626
to have membrane area AS , and specific conductance 627
gS and specific capacitance cS identical to that of the 628
dendritic membrane. The analytical expression for its 629
somal potential is given in Appendix 4. 630

5.2. First Simulation Study 631

In this study, the performance of a traditional and 632
the new compartmental model is compared by as- 633
sessing the accuracy with which both models deter- 634
mine the time course of the somal potential of the 635
test neuron (Fig. 3) when the neuron is subjected to 636
large scale exogenous point input. Each simulation dis- 637
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Figure 3. A branched neuron satisfying the Rall conditions. The diameters and lengths of the dendritic sections are given in the right hand
panel of the figure. At each branch point, the ratio of the length of a section to the square root of its radius is fixed for all children of the branch
point.

tributes 75 point inputs at random over the dendritic638
tree of the test neuron, where each input has strength639
2 × 10−5 µA. These inputs are then mapped to posi-640
tions on the Rall equivalent cylinder at the same elec-641
trotonic distance from the soma (assumed to be a sphere642
of diameter 40 µm). The time course of the poten-643
tial at the soma of the equivalent cylinder due to the644
combined effect of these inputs is determined analyt-645
ically and taken to be the reference potential against646
which error in both compartmental models is mea-647
sured. The difference between a computed potential648
and its exact value is determined at one millisecond649
intervals in the first 10 milliseconds of the simula-650
tion, and each difference is divided by the exact po-651
tential at that time to get a relative measure of error.652
The simulation procedure is repeated 2000 times to653
determine the statistics of the relative error for each of654
13 different levels of spatial discretisation (number of655
compartments).656

5.2.1. Results. The results for this study are set out657
in Table 2. This table shows the common logarithms658
of the mean value of the modulus of the relative error659
and the standard deviation of that error estimated ten660
milliseconds after the initiation of the stimulus. Similar661
results (not shown) hold for all times at which the errors662
were estimated.663

The left hand panel of Fig. 4 shows regression lines of664
the common logarithms of the modulus of the mean rel-665
ative error (denoted by RE ) for the traditional (dashed666
line) and new (solid line) compartmental models on the667

logarithm of the number of compartments (denoted by 668
N ) used to represent the model neuron. These lines, 669
based on the data in Table 2, have equations 670

log10 REtraditional = −1.09 − 1.17 log10 N ,

log10 REnew = −0.17 − 2.10 log10 N
(29)

in which the regressions are achieved with adjusted R2 671
values2 of 97.4 and 99.5% respectively. In view of the 672
very high R2 values for these regression equations, a 673
number of conclusions can be drawn from this simula- 674
tion study. For a fixed number of compartments, the er- 675
ror in the new compartmental model is always less than 676
that of the traditional model. The regression Eqs. (29) 677
support the argument made in Section 2.1 that the er- 678
ror in a traditional compartmental model in the pres- 679
ence of exogenous point current input is approximately 680
O(1/n), whereas the comparable error in the new com- 681
partmental model is approximately O(1/n2). In practi- 682
cal terms, for example, the regression results (29) sug- 683
gest that the new compartmental model with 100 com- 684
partments achieves approximately the same level of ac- 685
curacy as a traditional model with 500 compartments. 686

The standard deviation (SD) of the modulus of the 687
relative error can be regarded as an indicator of the 688
reliability of a single application of the model. The 689
right hand panel of Fig. 4 shows regression lines of the 690
common logarithms of the standard deviation of the 691
modulus of the relative error for the traditional (dashed 692
line) and new (solid line) compartmental models on 693
the logarithm of the number of compartments used to 694
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Table 2. The result of 2000 simulations for each of 13 different levels of dis-
cretisation used in the implementation of a traditional and new compartmental
model. The common logarithms of the mean value of the modulus of the relative
error and the standard deviation of that error are estimated at ten milliseconds
after the initiation of the stimulus.

Compartments Traditional new model Traditional new model
(log10(compartments)) log10(mean) log10(standard dev.)

17 (1.2305) −2.41151 −2.71945 −2.62290 −3.19338

21 (1.3222) −2.47233 −2.77674 −2.69851 −3.24583

34 (1.5314) −2.94299 −3.41196 −3.06731 −3.88820

41 (1.6127) −3.04729 −3.62138 −3.17081 −4.14997

54 (1.7323) −3.21258 −3.89150 −3.34889 −4.41251

61 (1.7853) −3.24692 −3.91268 −3.37653 −4.45051

75 (1.8750) −3.35180 −4.12056 −3.46881 −4.65463

82 (1.9138) −3.39846 −4.23567 −3.51591 −4.76498

93 (1.9684) −3.45602 −4.30636 −3.57633 −4.82045

193 (2.2855) −3.77417 −4.94731 −3.89829 −5.47886

293 (2.4668) −3.94409 −5.31876 −4.07811 −5.84771

390 (2.5910) −4.08234 −5.57349 −4.20025 −6.10791

495 (2.6946) −4.15996 −5.78252 −4.28525 −6.32790

Figure 4. The left panel shows the regression lines of the common logarithm of the mean relative errors in the new compartmental model
(solid line) and a traditional compartmental model (dashed line) against the common logarithm of the number of compartments. All errors are
measured ten milliseconds after initiation of the stimulus. The right panel shows the regression lines for the standard deviations of the mean
relative errors for the new compartmental model (solid line) and for a traditional compartmental model (dashed line).

represent the model neuron. These lines, based on the695
data in Table 2, have equations

696

log10 SD tradi tional = −1.32 − 1.12 log10 N ,

log10 SD new = −0.60 − 2.14 log10 N
(30)

in which the regressions are achieved with adjusted R2

values of 98.7 and 99.4% respectively. These regres- 697
sion lines show that the new compartmental model is 698
more reliable than a traditional compartmental model. 699
For example, a traditional compartmental model re- 700
quires at least 100 compartments to give a standard 701
deviation of the modulus of the relative error that is 702
smaller than that of the new compartmental model us- 703
ing 40 compartments. 704
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Figure 5. The spike rate plotted against the common logarithm of
the number of compartments for a traditional compartmental model
(dashed line) and the new compartmental model (solid line). The
dotted line shows the expected spike rate.

5.3. Second Simulation Study705

In the second simulation study 100 synapses are dis-706
tributed at random over the dendritic tree of the test707
neuron illustrated in Fig. 3. Each synapse is activated708
independently of all other synapses, has a maximum709
conductance of 3 × 10−5 mS and a rise time of 0.5710
msec. Activation times for each synapse follow Pois-711
son statistics with a mean rate of 30 pre-synaptic spikes712
per second. Spikes are generated by the soma of the test713
neuron using Hodgkin-Huxley kinetics. This study is714
based on 12 different levels of spatial discretisation715
(number of compartments) in which each simulation716
of the traditional and new compartmental models use717
identical synaptic firing times and identical numbers of718
compartments.719

5.3.1. Results. Table 5 gives the spike rate of soma-720
generated action potentials based on 11 seconds of ac-721
tivity, the first second of which is ignored.722

Figure 5 illustrates the data set out in Table 3 in723
which the spike rates for the traditional model (dashed724
line) and new model (solid line) are plotted against725
the common logarithm of N , the number of compart-726
ments used in each simulation. As N is increased, the727
spike rates generated by both models approach a com-728
mon limit. However, the spike rate generated by the729
traditional model approaches this limit more slowly730
and appears to oscillate as the limit is approached. The731
spike rate obtained using the traditional model with 500732
compartments is achieved in the new model with only733

Table 3. The spike rate estimated from a 10 second record of spike
train activity obtained from a traditional and the new compartmental
model at 12 different levels of spatial discretisation (number of
compartments).

Compartments Traditional model New model
(log10(Compartments)) mean firing rate mean firing rate

34 (1.5314) 31.5 27.6

41 (1.6127) 30.3 27.9

54 (1.7323) 30.5 27.5

61 (1.7853) 29.8 27.2

75 (1.8750) 29.2 27.0

82 (1.9138) 28.5 27.0

93 (1.9684) 28.3 26.8

193 (2.2855) 26.5 26.5

293 (2.4668) 25.9 26.2

390 (2.5910) 26.2 26.2

495 (2.6946) 26.7 26.2

992 (2.9965) 26.0 26.1

100 compartments. These differences in the number of 734
compartments required to achieve the same level of ac- 735
curacy in both models are identical to those observed 736
in the first study. 737

5.3.2. Comparison of Model-Generated Spike Trains. 738
It is clear from Fig. 5 that the mean rate of the spike train 739
generated by the new compartmental model converges 740
more quickly to the theoretical mean spike rate than 741
that generated by a traditional compartmental model. 742
One would therefore infer from the behaviour of this 743
summary statistic that the spike train generated by the 744
former is a more accurate representation of the spiking 745
behaviour of the test neuron in response to synaptic 746
activity than that generated by the latter. To investi- 747
gate the validity of this inference requires an accurate 748
comparison of the times of occurrence of the spikes in 749
the spike trains generated by each model with identical 750
synaptic activity applied to the test neuron. We take 751
as our reference the times of occurrence of the spikes 752
generated in ten seconds using the new compartmen- 753
tal model with 100 compartments (spike train N100). 754
These spike times are compared with those generated 755
by a traditional compartmental model with 100 com- 756
partments and with 500 compartments3 (spike trains 757
T100 and T500 respectively). The times of occurrence of 758
spikes in the spike trains to be compared are taken to be 759
identical if they occur within one millisecond of each 760
other. The comparison between N100 and T100 revealed 761
244 spikes common to both spike trains (i.e. occurring 762
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within one millisecond of each other). There were 24763
spikes unique toN100 and 39 spikes unique to T100. The764
comparison betweenN100 and T500 revealed 258 spikes765
common to both spike trains with 10 spikes unique to766
N100 and 9 spikes unique to T500. Since the reference767
spike train N100 is common to both comparisons, it768
is clear that as the number of compartments in a tradi-769
tional model increases, the spike train generated by that770
model will conform more closely to that generated by771
the new compartmental model with significantly fewer772
compartments.773

6. Concluding Remarks774

We have demonstrated that it is possible to achieve775
a significant increase in the accuracy and precision776
of compartmental models by developing a new com-777
partmental model in which compartments have two778
potentials—one at either end of the segment which the779
compartment represents. The new compartment acts780
as fundamental unit in the construction of a model of a781
branched dendrite. When these compartments are con-782
nected by requiring continuity of potential and conser-783
vation of current at segment boundaries, they provide a784
new type of compartmental model with a mathematical785
form identical to that of a traditional model in the sense786
that both types of compartmental model involve only787
nearest neighbour interactions. One demonstrated ben-788
efit of the new compartmental model is that it provides789
a mechanism to take account of the exact location of790
point process input by contrast with traditional com-791
partmental models which would assign this input to an792
accuracy of half the length of a segment. We would an-793
ticipate that the application of the new compartmental794
model would be most useful in association with exper-795
iments in which the precise timing of spikes is thought796
to be important (e.g., Oram et al., 1999 and the refer-797
ences therein) or in studies investigating the influence798
of the location of synaptic input on the mean rate of the799
spike train output (e.g., Poirazi et al., 2003).800

Appendix 1: Numerical Estimation of801
Perturbations to Axial Current802

The example in Section 4.2 demonstrates that synap-803
tic and exogenous input do not act independently. This804
means that both types of point process input must be805
treated simultaneously in the construction of the equa-806
tions to determine the perturbations IP and ID of the807

axial current. The equations for the perturbations in ax- 808
ial current are constructed by replacing Ik in Eqs. (14), 809
(16 and (17) by IP D + Î k where Î k is the perturbation 810
to Ik . If λ = λk is the site of an exogenous input then 811
the appropriate equation for the perturbed currents is 812

Î k − Î k+1 = Ik(t) , (31)

whereas if λ = λk is the site of a synapse with conduc- 813
tance gk(t), the appropriate equation is 814

Î k − Î k+1 + gkh

πgA

k∑
j=1

(λ j − λ j−1)

r j−1 r j
Î j = Ik(t) (32)

where the current Ik(t) is defined by the formula 815

Ik(t) = gk(t)

[
(1 − λk)

rP

rk
VP + λk

rD

rk
VD − Ek

]
. (33)

The derivation of Eq. (32) takes advantage of the iden-
tity

k∑
j=1

(λ j − λ j−1)

r j−1 r j
= λk

rP rk
,

which can be established by induction. Note that ex- 816
pression (33) for Ik(t) when λ = λk is a synapse is 817
precisely the current that would be expected to flow at 818
the synapse if the distribution of potential on the seg- 819
ment was described by expression (4). Finally, Eq. (17) 820
simplifies to 821

n+1∑
j=1

(λ j − λ j−1)rP rD

r j−1 r j
Î j = 0 (34)

where the constant multiplier rP rD has been added 822
without loss to make the coefficients of this equation 823
comparable to those appearing in the first n equations. 824
Eqs. (31), (32) and (34) may be represented compactly 825
in matrix notation by 826

A Î + GC Î = I (35)

where Î = [ Î 1, . . . , Î n+1]T is the (n + 1) dimensional 827
column vector of perturbations in axial current, I = 828
[I1, . . . , In, 0 ]T and A is the (n + 1) × (n + 1) matrix 829
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830




1 −1 0 · · · · · · 0

0 1 −1 · · · · · · 0

0 0 1 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1

λ1rP rD

r0r1

(λ2 − λ1)rP rD

r1r2

(λ3 − λ2)rP rD

r2r3
· · · (λn − λn−1)rP rD

rn−1rn

(1 − λn )rP rD

rnrn+1




.

(36)

Briefly, G is an (n + 1) × (n + 1) diagonal matrix831
in which the (k, k) entry is zero if λk is the site of an832
exogenous input and takes the value gk(t) if λk is the833
site of a synapse. The (n+1, n+1) entry of G is always834
zero. The matrix C is a lower triangular matrix of type835
(n +1)× (n +1) in which all the nonzero entries in the836
kth column take the value (λk − λk−1)/(πgArk−1 rk).837

Multiple Point Inputs838

To take account of the influence of the matrix GC in839
the solution of Eq. (35), the algorithm840

AÎ (m+1) = I − GC Î (m) (37)

is iterated with initial condition AÎ (0) = I. Although841
it can be demonstrated that the matrix A has a simple842
closed form expression for its inverse, it is not (numer-843
ically) efficient to use this expression to solve Eq. (37).844
Instead, we observe that A has an LU factorisation845
in which U is the (n + 1) × (n + 1) upper triangular846
matrix with ones everywhere in the main diagonal, neg-847
ative ones everywhere in the super-diagonal and zero848
everywhere else, and L is the (n + 1) × (n + 1) lower849
triangular matrix850




1 0 0 0 · · · · · · 0

0 1 0 0 · · · · · · 0

0 0 1 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·
λ1 rP

r1

λ2 rP

r2

λ3 rP

r3

λ4 rP

r4
· · · λn rP

rn
1




.(38)

Since I is a linear combination of VP , VD and a voltage851
independent term, then the solution to Eq. (37) has852
general representation853

Î = φ1(t)VP + φ2(t)VD + φ3(t) (39)

where φ1(t), φ2(t) and φ3(t) satisfy 854

A φ1 =
[

g1(1 − λ1)
rP

r1
, . . . , gn(1 − λn)

rP

rn
, 0

]T

−GC φ1 , (40)

A φ2 =
[

g1λ1
rD

r1
, . . . , gnλn

rD

rn
, 0

]T

− GC φ2 ,

A φ3 = −[ g1 E1, . . . , gn En, 0 ]T − GC φ3.

The Eqs. (40) for φ1(t), φ2(t) and φ3(t) may be solved 855
easily by an iterative procedure based on the sparse 856
LU factorisation of A. If the conductances g1, · · · , gn 857
are sufficiently small, the solution of Eqs. (40) is well 858
approximated by ignoring the second term on the right 859
hand side or Eqs. (40). This approximation is equivalent 860
to using the partitioning rule (7) in combination with 861
formula (4) for the membrane potential. 862

Special Case of Exogenous Input 863

If λ1, · · · , λn are sites of exogenous input I1, · · · , In 864
then G = 0 in Eq. (37) and I is the vector of exogenous 865
currents. In this case, expressions (10) for IP and ID 866
are obtained immediately as the first and last entries in 867
the solution Î of equation A Î = LU Î = I. 868

Appendix 2: The Partitioning of Capacitative 869
Current on Tapered Cylinders 870

Recall from expressions (7) that the contributions made 871
to the proximal and distal perturbations to the axial cur- 872
rent as a consequence of capacitative transmembrane 873
current on a tapered segment with membrane of vari- 874
able specific capacitance are respectively 875

I cap

P = 2π rP h

[
rP

dVP

dt

∫ 1

0

(1 − λ)2cM (λ) dλ

(1 − λ) rP + λ rD

+ rD
dVD

dt

∫ 1

0

λ(1 − λ)cM (λ) dλ

(1 − λ) rP + λ rD

]
,

−I cap

D = 2π rDh

[
rP

dVP

dt

∫ 1

0

λ(1 − λ)cM (λ) dλ

(1 − λ) rP + λ rD

+ rD
dVD

dt

∫ 1

0

λ2cM (λ) dλ

(1 − λ) rP + λ rD

]
. (41)
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For tapered segments (rP �= rD) with membranes of876
non-uniform specific capacitance, the integrals in (41)877
have values878

I cap

P = 2πh rP [cPψ(rP , rD) + cDφ(rP , rD)]
dVP

dt

+ 2πh[cPrDφ(rP , rD) + cDrPφ(rD, rP )]
dVD

dt
,

−I cap

D = 2πh[cPrDφ(rP , rD) + cDrPφ(rD, rP )]
dVP

dt

+ 2πhrD[cPφ(rD, rP ) + cDψ(rD, rP )]
dVD

dt
(42)

where cM (λ) = (1 − λ)cP + λ cD and the auxiliary879
functions φ(x, y) and ψ(x, y) are defined by880

φ(x, y) = x

6(x − y)3

×
[

x2 − 5xy − 2y2 + 6xy2

x − y
log

x

y

]
,

ψ(x, y) = x

6(x − y)3
(43)

×
[

2x2 − 7xy + 11y2 − 6y3

x − y
log

x

y

]
.

The evaluation of the integrals in expression (41) is881
facilitated by defining the auxiliary integrals882

K1 =
∫ 1

0

(1 − λ)2ĉM (λ) dλ

r̂ (λ)
,

K2 =
∫ 1

0

λ(1 − λ)ĉM (λ) dλ

r̂ (λ)
,

K3 =
∫ 1

0

λ2ĉM (λ) dλ

r̂ (λ)

and observing that K1, K2 and K3 can be determined883
easily from the identities884

K1 + 2K2 + K3 =
∫ 1

0

ĉM (λ) dλ

r̂ (λ)
,

rP K1 + rD K2 =
∫ 1

0
(1 − λ)ĉM (λ) dλ ,

rP K2 + rD K3 =
∫ 1

0
λ ĉM (λ) dλ .

The results given in Section 4.3.1 for a uniform segment885
(rP = rD) are obtained from formulae (42) by replac-886
ing φ(x, y) and ψ(x, y) with their respective limiting887

values of 1/12 and 1/4 where each limit is taken as 888
x → y. 889

Appendix 3: Partitioning of Voltage-Dependent 890
Current on Tapered Cylinders 891

The construction of I cap

P and I cap

D for a membrane with 892
non-constant specific capacitance provides the frame- 893
work for treating intrinsic voltage-dependent trans- 894
membrane current. For tapered segments with non- 895
constant membrane conductance, the contributions to 896
the perturbations in the axial current at the proximal 897
and distal boundaries of the segment are identical to 898
expressions (42) with cP replaced by gP (VP ;θ) and 899
cD replaced by gD(VD;θ) . These contributions are 900

I IVDC
P = 2πh rP [gP (VP ;θ) ψ(rP , rD)

+ gD(VD;θ) φ(rP , rD)](VP − E)

+ 2πh[gP (VP ;θ) rDφ(rP , rD)

+ gD(VD;θ) rPφ(rD, rP )](VD − E) ,

−I IVDC
D = 2πh[gP (VP ;θ) rDφ(rP , rD)

+ gD(VD;θ) rPφ(rD, rP )](VP − E)

+ 2πh rD[gP (VP ;θ) φ(rD, rP )

+ gD(VD;θ) ψ(rD, rP )](VD − E) (44)

where the auxiliary functions φ(x, y) and ψ(x, y) are 901
defined in (43). 902

Appendix 4: Analytical Solution for Somal 903
Potential of Test Neuron 904

It may be shown that V (t), the deviation of the somal 905
transmembrane potential from its resting value as a 906
result of a distribution I(x, t) of current on a uniform 907
cylindrical dendrite of radius a and length l attached to 908
a soma is 909

V (t) = e−t/τ

[
φ0(t) +

∑
β

φβ(t)e−β2t/L2τ cos β

]
,

L = l

√
2gM

agA
(45)

where τ is the time constant of the somal and dendritic 910
membranes and gM and gA have their usual meanings. 911
The summation is taken over all the solutions β of the 912
transcendental equation tan β +γβ = 0 where γ (con- 913
stant) is the ratio of the total membrane area of the soma 914
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to the total membrane area of the dendrite. The func-915
tions φ0(t) and φβ(t) are solutions of the differential916
equations917

dφ0

dt
= − et/τ

CD + CS

[
IS(t) +

∫ l

0
I(x, t) dx

]
,

dφβ

dt
= − 2e(1+β2/L2)t/τ

CD + CS cos2 β

[ ∫ 1

0
I(x, t) cos β

× (1 − x/ l) dx + cos β IS(t)

]
(46)

with initial conditions φ0(0) = φβ(0) = 0, that is,918
the neuron is initialised at its resting potential. The919
parameters CS and CD denote respectively the total920
membrane capacitances of the soma and dendrite, and921
IS(t) is the current supplied to the soma.922

In the special case in which point currents923
I1(t), . . . , In(t) act at distances x1, . . . xn from the924
soma of the uniform cylinder, the corresponding co-925
efficient functions φ0 and φβ satisfy926

dφ0

dt
= − et/τ

CD + CS

[
IS(t) +

n∑
k=1

Ik(t)

]
,

dφβ

dt
= − 2e(1+β2/L2)t/τ

CD + CS cos2 β

×
[

n∑
k=1

Ik(t) cos β(1 − xk/ l) + cos β IS(t)

]
.

(47)
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Notes 931

1. Following the terminology of Hines and Carnevale (Hines97, a 932
point process is taken to mean either synaptic input (voltage- 933
dependent) or an exogenous point current input (voltage- 934
independent). 935

2. R2 measures the proportion of the total variation of the de- 936
pendent variable about its mean value that is explained by the 937
regression, and necessarily takes a value between zero and one 938
expressed as a percentage. 939

3. All the simulations were run on a PC with dual Athlon 940
1500MP processors. The times required to simulate 10 sec- 941
onds of spike train data were 61 minutes for the new com- 942
partmental model with 100 compartments, 41 minutes and 353 943
minutes for a traditional compartmental model with 100 and 944
500 compartments respectively. In the presence of point cur- 945
rent input alone, the computational times for both models are 946
identical. 947
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