
Increased computational accuracy in

multi-compartmental cable models by a novel

approach for precise point process localization

A.E. Lindsay

Department of Mathematics, University of Edinburgh,

Edinburgh EH9 3JZ

K.A. Lindsay

Department of Mathematics, University of Glasgow,

Glasgow G12 8QQ

J.R. Rosenberg†

Division of Neuroscience and Biomedical Systems,

University of Glasgow, Glasgow G12 8QQ

October 26, 2004

† Corresponding author

J.R. Rosenberg

West Medical Building

Division of Neuroscience and Biomedical Systems

University of Glasgow

Glasgow G12 8QQ

Scotland UK

Tel (+44) 141 330 6589

Fax (+44) 141 330 2923

Email j.rosenberg@bio.gla.ac.uk

Keywords

Compartmental models, Dendrites, Cable Equation



Abstract

Compartmental models of dendrites are the most widely used tool for investi-

gating their electrical behaviour. Traditional models assign a single potential

to a compartment. This potential is associated with the membrane potential

at the centre of the segment represented by the compartment. All input to

that segment, independent of its location on the segment, is assumed to act at

the centre of the segment with the potential of the compartment. By contrast,

the compartmental model introduced in this article assigns a potential to each

end of a segment, and takes into account the location of input to a segment

on the model solution by partitioning the effect of this input between the axial

currents at the proximal and distal boundaries of segments. For a given neuron,

the new and traditional approaches to compartmental modelling use the same

number of locations at which the membrane potential is to be determined, and

lead to ordinary differential equations that are structurally identical. However,

the solution achieved by the new approach gives an order of magnitude better

accuracy and precision than that achieved by the latter in the presence of point

process input.

2



1 Introduction

Compartmental models have become important tools for investigating the behaviour of neurons

to the extent that a number of packages exist to facilitate their implementation (e.g. Hines and

Carnevale 1997; Bower and Beeman 1997). These models are constructed by replacing the con-

tinuum description of a neuron by a discrete description of the neuron formed by partitioning it

into contiguous segments which interact with their nearest neighbours across common bound-

aries. A compartment is a mathematical representation of the morphological and biophysical

properties of a segment, and a compartmental model is the collection of all compartments along

with a specification of their connectivity. The efficacy of any formulation of a compartmental

model depends on the faithfulness with which it captures the behaviour of the neuron that it

represents, and it is in this respect that the new compartmental model developed in this arti-

cle will be seen to perform better than existing compartmental models with a similar level of

complexity.

The traditional approach to compartmental modelling (e.g., Rall 1964; Segev and Burke, 1998)

assigns a single potential to a compartment. This potential takes its value through an asso-

ciation with the average value of the current density crossing the membrane of the segment,

and in a traditional compartmental model is approximated by the membrane potential at the

centre of the segment. However a compartment of this type is aesthetically unsatisfactory since

it cannot act as the fundamental unit in the construction of a model dendrite, first, because two

compartments are required to define axial current flow, and second, because half compartments

are required to represent branch points and dendritic terminals. On the other hand, the new ap-

proach to compartmental modelling assigns two potentials to a compartment – one to represent

the membrane potential at the proximal boundary of the segment and the other to represent the

membrane potential at its distal boundary. The new compartment can exist as an independent

entity and can therefore function as the basic building block of a multi-compartmental neuronal

model. Another significant difference between a traditional compartmental model and the new

compartmental model lies in the novel procedure for the treatment of transmembrane current.

In a traditional compartmental model the influence of transmembrane current on a segment is

approximated by requiring these currents to act at the centre of the segment with the single

potential assigned to the compartment representing the segment, and consequently these mod-

els do not reflect accurately the influence of the precise location of point process input1 on the

segment. By contrast, the formulation of the new compartmental model makes it more respon-

sive to the influence of the location of point process input to a segment, and in the presence of

these inputs, is shown to be an order of magnitude more accurate that a comparable traditional

compartmental model.

The accuracy of the new and traditional approaches to compartmental modelling is first assessed

1Following the terminology of Hines and Carnevale (1997), a point process is taken to mean either synaptic

input (voltage-dependent) or an exogenous point current input (voltage-independent).

3



by calculating the error in the somal potential of a test neuron when each approach is used to

calculate this potential ten milliseconds after the initiation of large scale point current input. In

a second comparison, the accuracy of the two approaches is assessed by comparing the statistics

of the spike train output generated by each type of compartmental model of the test neuron

when subjected to large scale synaptic input.

2 Structure of compartmental models

We are concerned with compartmental models of dendrites. In this context, the fundamental

morphological unit is the dendritic section, defined to be the length of dendrite connecting one

branch point to a neighbouring branch point, to the soma or to a terminal. Compartmental

modelling begins by subdividing each dendritic section into segments which are typically re-

garded as uniform circular cylinders (e.g. Segev and Burke, 1998) or tapered circular cylinders

(Hines and Carnevale, 1997). In the new approach to compartmental modelling, the known

membrane potentials at the ends of a segment (rather than its centre) provide the basis for

the development of a set of rules which enable the influence of precisely located point process

input to be partitioned between the axial current at the proximal and distal boundaries of the

segment. The mathematical equations of the compartmental model are constructed by enforc-

ing conservation of axial current at segment boundaries, dendritic branch points and dendritic

terminals.

2.1 Model accuracy and the partitioning of point process input

The benefit in accuracy gained by taking into account the precise placement of point process

input on a dendrite is best appreciated by considering how, in the absence of this facility, small

variations in the location of segment boundaries exert a large influence on the solution of a

traditional compartmental model. Consider, for example, a point process close to a segment

boundary. A small change in the position of that boundary may move the assigned location

of this point process from the centre of one segment to that of an adjacent segment. With

respect to a traditional compartmental model, the location of this point process is therefore

determined only to an accuracy of half a segment length, and this indeterminacy will in turn

generate a model solution that is particularly sensitive to segment boundaries. Of course, with

a small number of point process input, this problem can be avoided in the traditional approach

to compartmental modelling by arranging that only one point process falls on a segment, and

that the location of this input coincides with the centre of the segment. However, this strategy

is not feasible when dealing with large scale point process input. What is required is a procedure

which describes the effect of point process input on a dendritic section in a way that is largely

insensitive to how that section is represented by segments.

The primary sources of error in the construction of a compartmental model are the well-
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documented effect of discretising a continuous dendrite, and the less well-documented error

introduced by the placement of point process input on the dendrite. In the traditional approach

based on a compartmental model with n compartments, the first type of error is O(1/n2) (by

analogy with the finite difference representation of derivatives), but it is not widely recognised

that the second type of error is O(1/n) whenever the input does not naturally fall at the centre of

segments. Since the accuracy of any model is governed by the least accurate contribution to the

model, it is clear that in practice the traditional approach to compartmental modelling in the

presence of point current and synaptic input is O(1/n) accurate. This theoretical observation

is supported by the simulation studies of Subsections 5.2 and 5.3, and by an example provided

for us by an anonymous reviewer. This reviewer used the simulator NEURON to calculate the

somal potential of the test neuron shown in Figure 3 10msec after the initiation of point current

input. The results of this calculation are shown in Table 1

Segments

per branch

Point current input at

centre of nearest segment

Point current input

divided proportionately

section V (mV) ∆V (mV) V (mV) ∆V (mV)

1 10.2355 10.5692

2 10.2311 (−4.4616 × 10−3) 10.3357 (−2.3352 × 10−1)

4 10.2367 (5.6256 × 10−3) 10.2725 (−6.3143 × 10−2)

8 10.2333 (−3.4428 × 10−3) 10.2556 (−1.6908 × 10−2)

16 10.2470 (1.3754 × 10−2) 10.2519 (−3.6550 × 10−3)

32 10.2509 (3.8793 × 10−3) 10.2508 (−1.1320 × 10−3)

64 10.2521 (1.1874 × 10−3) 10.2506 (−2.4666 × 10−4)

128 10.2530 (8.8765 × 10−4) 10.2505 (−6.3146 × 10−5)

256 10.2511 (−1.9053 × 10−3) 10.2505 (−1.5181 × 10−5)

Table 1: The somal potential of the test neuron shown in Figure 3 is given 10msec after

the initiation of point current input. The calculation is done for nine different levels of

discretisation and two methods for the placement of exogenous point current input.

The results shown in the middle panel of Table 1 (traditional compartmental model) are based

on placing the exogenous point current input at the centre of its nearest segment, whereas the

results shown in the right hand panel (modified compartmental model) are based on the division

of the point current input between the centres of adjacent compartments in proportion to the

conductance between the location of the input and these centres. Several important differences

between the two procedures for allocating the location of point current input are evident from

the results set out in Table 1. The results based on dividing the current proportionately be-

tween the centres of neighbouring compartments converge smoothly and more rapidly to the

true potential than those based on the traditional approach in which the current is placed at

the centre of the compartment. An extrapolation procedure demonstrates that the potentials
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generated by the modified approach converge quadratically to the true somal potential as the

number of compartments is increased. Moreover, not only does the solution following the tra-

ditional approach (middle panel) converge to the true potential more slowly than the modified

approach (right hand panel), the former appears to oscillate as it approaches this potential.

Finally, further evidence for the superior convergence of the modified approach is clear from the

observation that the best estimate of the true potential using the traditional approach with 256

segments per branch section is achieved in the modified approach with approximately 28 seg-

ments per branch section. It will be seen in Section 4.1 that the procedure used by the reviewer

to partition point current input is a special case of the general procedure for partitioning point

process input. By contrast with the traditional approach, the new approach to compartmental

modelling describes the influence of point process input to an accuracy of O(1/n2), and therefore

one would anticipate that it does not degrade the overall accuracy of the model. The validity

of this assertion is demonstrated through the simulation studies in Subsections 5.2 and 5.3.

3 Distributed and point process input to a segment

In general, segments receive distributed and point process sources of input each of which require

a different mathematical treatment. The current supplied by distributed input such as intrinsic

voltage-dependent current or capacitative current is proportional to the surface area of the

segment on which it acts, whereas the current supplied to a segment at a synapse or by an

exogenous point input is independent of the size of the segment. An implicit assumption of

a compartmental model is that distributed current input to a segment is small by comparison

with axial current flowing along the segment.

To appreciate why this assumption is reasonable, consider a cylindrical dendritic segment of

radius r (cm), length h (cm) and with membrane of constant conductance gM (mS/cm2).

Suppose that axoplasm has constant conductance gA (mS/cm) and that a potential difference

V (mV) exists between the segment boundaries, then the axial current along the segment is

IA = πr2gAV/h (µA) and the total distributed current crossing the membrane of the segment

is IM = 2πrhgM (V/2). The ratio of the distributed current to the axial current is therefore

Distributed current

Axial current
=

IM

IA

=
πrhgM V

πr2gA (V/h)
=

h2gM

rgA

=
(h

r

)2 rgM

gA

. (1)

For a typical dendritic segment rgM/gA is small (say ≈ 10−5), and therefore distributed current

acting on a segment is small by comparison with axial current for “short” segments. On the other

hand, segments several orders of magnitude longer than their radius can be expected to have

distributed and axial currents of similar magnitude. An important property of a compartmental

model is that segments are not excessively long by comparison with their radius. (However, see

Segev and Burke, 1998, Figure 3.3b). In the treatment of distributed current, the development

of the new compartmental model makes explicit use of the assumption that distributed current is

much smaller than axial current. This assumption may not be valid for point process input, and
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will not be made for the treatment of this type of input in the new approach to compartmental

modelling.

3.1 Axial current in the absence of transmembrane current

The importance of the conclusion from Section 3 is that distributed transmembrane current

acting on short segments is small compared with axial current, and may be neglected in a first

approximation of the distribution of membrane potential on a segment. Thus in the absence

of point process input, the axial current in a segment is well approximated from the potential

drop across the segment. In the light of this approximation, consider Figure 1 which illustrates

a dendritic segment of length h in which λ ∈ [0, 1] is the fractional distance of a point of the

segment from its proximal end (λ = 0). Let rP and rD be the radii of the segment at its

proximal and distal boundaries respectively, let VP(t) and VD(t) be the membrane potentials at

these boundaries and let IPD be the axial current in the segment in the absence of transmembrane

current.

�
IPDVP

λ = 0

P

rP

VD

λ = 1

D

rDh

Figure 1: A segment of length h is

illustrated. In the absence of trans-

membrane current, membrane poten-

tials VP and VD at the proximal and

distal boundaries of the segment gen-

erate axial current IPD.

The membrane of the segment in Figure 1 is formed by rotating the straight line PD about the

axis of the dendrite to form the frustum of a cone of radius

r(λ) = (1 − λ)rP + λrD , λ ∈ [0, 1] . (2)

Assuming that the segment is filled with axoplasm of constant conductance gA and that no

current crosses its membrane, then the relationship between VP, VD and IPD can be constructed

by integrating the defining equation of axial current, namely IPD = −gA A(x) dV/dx, from the

proximal to the distal boundary of a segment. For the conical segment illustrated in Figure 1,

A(x) = πr2(λ), dV/dx = h−1 dV/dλ and the equation to be integrated is

IPD = −
gAπ

h

[
(1 − λ)rP + λrD

]2 dV

dλ

with boundary conditions V (0) = VP and V (1) = VD. The result of this calculation is that the

the axial current IPD and the potentials VP and VD are connected by the formula

IPD =
πgArPrD

h
( VP − VD ) (3)
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in the absence of transmembrane current. Moreover, the potential at the point λ is

V (λ) =
VP (1 − λ) rP + VD λ rD

(1 − λ) rP + λ rD

. (4)

Note that equation (4) is valid for sections with taper and in the absence of taper will lead

to a membrane potential which varies linearly along the length of a segment. The subsequent

development of the new compartmental model assumes that sections may taper unless stated

specifically that the section is uniform.

3.2 Partitioning rule for transmembrane current

In compartmental modelling the effect of transmembrane current is represented in the model by

input at points, or nodes, at which the membrane potential is known. In a traditional approach

to compartmental modelling, these nodes are at the centre of segments, whereas in the new

approach they are located at the boundaries of segments. The new approach partitions the

effect of input at any location between the nodes at the proximal and distal boundaries of the

segment. This procedure ensures that the solution of the compartmental model is insensitive to

small changes in the location of segment boundaries because changes in these boundaries also

affect how the input is partitioned between nodes. In the mathematical description of the new

compartmental model, the effect of input to a segment is treated as perturbations IP and ID to

the axial current IPD at the proximal and distal boundaries of a segment. Axial current IPD + IP

is assumed to leave the proximal boundary of a segment in the direction of its distal boundary,

while axial current IPD + ID is assumed to arrive at the distal boundary of a segment from the

direction of its proximal boundary. The perturbations IP and ID must satisfy the conservation

of current condition

(IPD + ID) − (IPD + IP) + h

∫ 1

0
J(λ, t) dλ = 0 → IP − ID = h

∫ 1

0
J(λ, t) dλ (5)

where J(λ, t) denotes transmembrane current. The task is to construct expressions for IP and

ID that satisfy (5) for all constitutive forms for the current density J(λ, t). The new approach to

compartmental modelling requires a procedure or rule for partitioning transmembrane current

between the proximal and distal boundaries of a segment. The rule used in this article is that

transmembrane current flow to a boundary of a segment is proportional to the axial conductance

of the segment lying between the point of application of the current and that boundary. If GP(λ)

is the axial conductance of the portion of segment lying between the point λ and the proximal

boundary of the segment, and GD(λ) is the axial conductance of the portion of segment lying

between the point λ and the distal boundary of the segment, then

GP(λ) =
πgArPr(λ)

λh
, GD(λ) =

πgArDr(λ)

(1 − λ)h
(6)
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and the rule for partitioning transmembrane current leads to the expressions

IP = h

∫ 1

0

GPJ(λ, t) dλ

GP + GD

= h

∫ 1

0

(1 − λ) rP J(λ, t) dλ

(1 − λ) rP + λ rD

,

−ID = h

∫ 1

0

GDJ(λ, t) dλ

GP + GD

= h

∫ 1

0

λ rD J(λ, t) dλ

(1 − λ) rP + λ rD

.

(7)

Clearly these expressions satisfy identically condition (5) for the conservation of current.

3.3 Specification of transmembrane current

Transmembrane current is usually assumed to consist of four distinct components: capacitative

current, intrinsic voltage-dependent current and point process input which is subdivided into

synaptic current and exogenous point current. Total transmembrane current is represented by
∫

2πr cM

∂V

∂t
dx +

∫
2πr JIVDC(V ) dx +

∑
JSYN(Vsyn) +

∑
IEX (8)

where the integrals and summations are taken over the length of a segment. In this expression

cM (µF/cm2) is the specific capacitance of the segment membrane, V (x, t) is the distribution

of membrane potential at time t (msec), JIVDC(V ) (µA/cm2) is the density of transmembrane

current due to intrinsic voltage-dependent channel activity, JSYN(Vsyn) (µA) describes synaptic

input and IEX (µA) describes exogenous input. Although the specific capacitance of dendritic

membrane is normally taken to be constant in neuronal modelling, it will be treated here as

a function of position to show how transmembrane current of this type may be incorporated

into the new compartmental model. For a segment of length h, the expression for J(λ, t)

corresponding to formula (8) is

hJ(λ, t) = 2πhr(λ) cM(λ)
∂V (λ, t)

∂t
+ 2πhr(λ)JIVDC(V (λ, t))

+
∑

k

JSYN(Vsyn) δ(λ − λk) +
∑

k

IEX(t) δ(λ − λk)
(9)

where λk denotes the relative location of the kth synapse or exogenous input with respect to

the proximal boundary of the segment (λ = 0).

4 The partitioning of transmembrane current

Further progress requires expressions for IP and ID in terms of the biophysical and morphological

properties of the segment and the membrane potentials at its proximal and distal boundaries.

Each component of the transmembrane current (9) is examined separately.

4.1 Point processes

We model synaptic current by the conventional constitutive equation I = g(t)(V −E) where E

is the reversal potential associated with the synapse and g(t) is the time course of the synaptic
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conductance. Exogenous point current input takes the form I = I(t) where I(t) is a known

function of t. Suppose that λ1, · · · , λn are sites of point input I1, · · · In to the segment, then

it follows from expressions (7) that the contributions made to IP and ID from these currents are

IP =
n∑

k=1

rP

rk
(1 − λk) Ik , −ID =

n∑

k=1

rD

rk
λk Ik (10)

where rk = (1 − λk) rP + λk rD. In the special case of exogenous input alone, Ik = Ik(t) and

expressions (10) give the exact partitioning of this input. The procedure used by the anonymous

reviewer (see Section 2.1) is an application of equations (10) to a uniform segment, that is,

IP =
n∑

k=1

(1 − λk) Ik , −ID =
n∑

k=1

λk Ik . (11)

However, when synaptic input is present, expressions (10) for IP and ID will contain the (un-

known) membrane potentials at the synapses, and its use will therefore require these potentials

to be estimated in terms of known functions and the potentials at the proximal and distal

boundaries of the segment.

One obvious way to estimate the potential at the site of a synapse is to use the potential distri-

bution (4). However, the efficacy of this approximation relies on the validity of the assumption

that transmembrane current is negligible by comparison with axial current. In the presence of

synaptic input, transmembrane current need not be negligible by comparison with axial current,

and so the partitioning rule must be developed to include this possibility.

4.2 The partitioning rule in the presence of synaptic input

The partitioning of point process input set out in Subsection 4.1 is developed by noting that this

rule may be applied to the division of transmembrane current between nearest-neighbour sites

of a point input, and that the proximal and distal boundaries of the segment are simply special

cases of these sites. This application of the partitioning rule is equivalent to considering the

balance between axial current and point current at each site of input ignoring the influence of

distributed transmembrane current between sites. The implementation of the partitioning rule

for general point process input is done in two stages. The first stage of the discussion focusses

on the construction of the equations satisfied by the potentials at the sites of the point input,

and the second stage of the discussion describes how these equations may be solved numerically

and is contained in appendix one.

4.2.1 Equations for the potentials

In general, the locations of point process input can be taken to divide a segment into sub-

segments, defined to be the lengths of the segment between the locations of these inputs. Fig-

ure 2 is a schematic representation of a segment of length h illustrating the relative locations
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λ1, · · · , λn of n point inputs I1, · · · In on a segment. Suppose axial current Ik flows to the

point λk from the point λk−1 and that Vk is the potential at the point λk.

�• • • • • • •
λ0 = 0 λ1 λk−1 λk λn−1 λn λn+1 = 1

I1 I2 Ik Ik+1 In In+1

I1 Ik−1 Ik In−1 In

Figure 2: Configuration of point input to a dendritic segment of

length h. Here Ik = gk(t)(Vk −Ek) in the case of synaptic input

at λk or Ik = Ik(t) if the input is an exogenous point current.

Since distributed current alone can flow across the membrane of a sub-segment, equation (3)

may be used to describe the axial current in the k-th sub-segment by replacing VP and rP with

Vk−1 and rk−1 respectively, by replacing VD and rD with Vk and rk respectively, and by replacing

h with h(λk − λk−1), the length of the sub-segment. If V1, · · · , Vn are the potentials at the

points λ1, · · · , λn at which point process input is applied, then the axial currents I1, · · · , In+1

are related to the potentials V1, · · · , Vn by the equations

Ik =
πgArk−1 rk

h(λk − λk−1)
(Vk−1 − Vk ) , k = 1, · · · , (n + 1) (12)

where it is understood that λ0 = 0, λn+1 = 1, r0 = rP, rn+1 = rD, V0 = VP and Vn+1 = VD.

Equations (12) are rearranged in the form

Vk−1 − Vk =
h

πgA

(λk − λk−1)

rk−1 rk
Ik , k = 1, · · · , (n + 1) .

By recognising that Vk−VP is the sum of the potential differences across the first k sub-segments,

it follows immediately from the previous equation that

Vk = VP −
h

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Ij , k = 1, · · · , n . (13)

If λk is the point of application of an exogenous input of strength Ik(t) then

Ik+1 + Ik(t) = Ik . (14)

On the other hand, if there is a synapse at λk, then Ik = gk(t)(Vk − Ek) and conservation of

current requires that

Ik+1 + gk(Vk − Ek) = Ik . (15)

Formula (13) for Vk is now used to rewrite equation (15) in terms of axial currents to get

Ik − Ik+1 +
gkh

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Ij = gk(VP − Ek ) , k = 1, · · · , n . (16)

Thus conservation of current at the points λ1, · · · , λn gives rise to n equations for the (n + 1)

currents I1, · · · , In+1. In order to complete the system of equations specifying I1, · · · , In+1,
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note that the potentials at the proximal and distal boundaries of the segment are known, and

that this condition constrains the currents I1, · · · , In+1 to satisfy

n+1∑

j=1

(λj − λj−1)rPrD

rj−1 rj
Ij =

πgArPrD

h
(VP − VD ) . (17)

Equation (17) is obtained from equation (13) by asserting that Vn+1 = VD. Note also that

equation (17) has been multiplied by the factor rPrD for the benefit of numerical work to make

the coefficients of the currents in the rescaled equation order one. To summarise, the currents

I1, . . . In+1 are determined by solving the linear equations

Ik − Ik+1 = Ik(t)

Ik − Ik+1 +
gkh

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Ij = gk(VP − Ek ) ,



 k = 1, · · · , n

n+1∑

j=1

(λj − λj−1)rPrD

rj−1 rj
Ij =

πgArPrD

h
(VP − VD )

(18)

where the first equation is used if λk is the location of an exogenous point input and the

second equation is used if λk is the location of a synapse. The following example illustrates an

application of equations (18) to the case of a single synapse and a single exogenous input.

Example Consider a segment which receives synaptic input of conductance g1(t) at λ1 and

exogenous current I2(t) at λ2 where 0 < λ1 < λ2 < 1. This partitioning of the segment gives

rise to three currents I1, I2 and I3. The determination of IP and ID will require expressions for

I1 and I3 in terms of the known conductance g1(t), the known current I2(t), the geometry of

the segment, and finally, the potentials VP and VD at the proximal and distal boundaries of the

segment. The formulation of this problem will involve the current I2 as an auxiliary variable,

but the solution for I2 is not sought. It follows from equations (18) that I1, I2 and I3 satisfy

I1 − I2 +
g1(t)h

πgA

(λ1 − λ0)

r0 r1
I1 = g1(t)( VP − E1 ) ,

I2 − I3 = I2(t) ,

(λ1 − λ0)r0 r3

r0 r1
I1 +

(λ2 − λ1)r0 r3

r1 r2
I2 +

(λ3 − λ2)r0 r3

r2 r3
I3 =

πgAr0 r3

h
( VP − VD ) .

(19)

The first equation in (19) is equation (16) applied at the location of the synapse (λ = λ1), and

the second equation in (19) is equation (14) applied at the location of the exogenous current

(λ = λ2). The last equation in (19) is the the consistency condition expressed by equation (17).

Equations (19) can be expressed in matrix form AX = B where X = [ I1, I2, I3 ]T and

A =





1 +
g1(t)h

πgA

(λ1 − λ0)

r0 r1
−1 0

0 1 −1

(λ1 − λ0)r3

r1

(λ2 − λ1)r0 r3

r1 r2

(λ3 − λ2)r0

r2




, B =





g1(t)(VP − E1)

I2(t)

πgAr0 r3

h
(VP − VD)





.
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It is a matter of careful algebra to show that the currents I1 and I3 are given by the expressions

I1 =

πgAr0 r3

h
(VP − VD) + (1 − λ1)

r0

r1
g1(t)(VP − E1) + I2(t)(1 − λ2)

r0

r2

1 +
λ1(1 − λ1)hg1(t)

πgAr2
1

,

I3 =

πgAr0 r3

h

(
1 +

λ1hg1(t)

πgAr0r1

)
(VP − VD) −

λ1r3

r1
g1(t)(VP − E1)

− I2(t)
r3

r2

(
λ2 +

λ1(λ2 − λ1)hg1(t)

πgAr2
1

)

1 +
λ1(1 − λ1)hg1(t)

πgAr2
1

.

(20)

Of course, the complexity of these expressions for I1 and I3 is in part due to the fact that they

combine the axial current in the segment in the absence of point input with the modification

to this current due to the presence of the synaptic input at λ = λ1 and the exogenous input at

λ = λ2. The perturbations IP = I1 − IPD and ID = I3 − IPD to the axial current at the proximal

and distal boundaries of the segment are now calculated from formulae (3) and (20) to give

IP =

r0(1 − λ1)

r1
g1(t)( ψ1 − E1 ) + I2(t)(1 − λ2)

r0

r2

1 +
λ1(1 − λ1)hg1(t)

πgAr2
1

,

− ID =

λ1r3

r1
g1(t)( ψ1 − E1 ) + I2(t)

r3

r2

[
λ2 +

g1(t)hλ1(λ2 − λ1)

πgAr2
1

]

1 +
λ1(1 − λ1)hg1(t)

πgAr2
1

.

(21)

where ψ1 is the potential

ψ1 =
r0(1 − λ1)VP + r3λ1VD

r1
. (22)

It is clear from (4) that ψ1 would be the model potential at λ = λ1 in the absence of transmem-

brane current, and therefore g1(t)( ψ1 − E1 ) would be the transmembrane current supplied by

the synapse at λ = λ1 assuming that this synaptic current is negligible by comparison with the

axial current. Furthermore, if the common denominator of expressions (21) is treated as unity,

then expressions (21) simplify to

IP =
r0(1 − λ1)

r1
g1(t)( ψ1 − E1 ) + I2(t)(1 − λ2)

r0

r2
,

− ID =
λ1r3

r1
g1(t)( ψ1 − E1 ) + I2(t)

r3

r2
λ2 ,

(23)

which are identical to equations (10) with I1 = g1(t)( ψ1 − E1 ) and I2 = I(t). Expressions

(23) are those that would follow from making the assumption that transmembrane current is

negligible by comparison with axial current in the presence of synaptic input. Consequently, the

use of expressions (23) for IP and ID would overestimate the true strength of both the synaptic
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and the exogenous input to a segment. In conclusion, synaptic and exogenous input do not act

independently when a segment receives both types of point process input.

The second stage of the analysis deals with the construction and numerical solution of the

equations constructed from the particular configuration of synapses and exogenous input, and

is given in Appendix 1.

4.3 Distributed transmembrane current

All distributed transmembrane current is treated using equations (7) with appropriate expres-

sions for J(λ, t), and with occurrences of the membrane potential approximated by expression

(4). Capacitative current and intrinsic voltage-dependent current are considered separately.

4.3.1 Capacitative transmembrane current

The component of capacitative current in (9) is estimated by approximating the true membrane

potential along the segment by expression (4) to obtain

J cap(λ, t) = 2πcM(λ)r(λ)
dV (λ, t)

dt
= 2πcM(λ)

[
(1 − λ) rP

dVP

dt
+ λ rD

dVD

dt

]
. (24)

It now follows from expressions (7) that the contributions made by capacitative transmembrane

current to IP and to ID are

I cap

P = 2π rPh
[
rP

dVP

dt

∫ 1

0

(1 − λ)2cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

]
,

−I cap

D = 2π rDh
[
rP

dVP

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ2cM(λ) dλ

(1 − λ) rP + λ rD

]
.

(25)

If the compartment is a uniform cylinder with constant specific membrane capacitance, the

perturbations in axial current at the proximal and distal boundaries of the segment may be

computed by evaluating the integrals in formulae (25) to get

I cap

P =
C

6

[
2
dVP

dt
+

dVD

dt

]
, −I cap

D =
C

6

[ dVP

dt
+ 2

dVD

dt

]
(26)

where C is the total membrane capacitance of the segment. The calculation for tapered segments

with non-uniform membrane specific capacitance is presented in Appendix 2.

4.3.2 Intrinsic voltage-dependent transmembrane current

The construction of I cap

P and I cap

D for a membrane with non-constant specific capacitance provides

the framework for treating intrinsic voltage-dependent transmembrane current. For an ionic

species α, this current is usually described by the constitutive formula J = gα(θ)(V − Eα)

where V is the membrane potential, Eα is the reversal potential for species α and gα(θ) is

a membrane conductance which depends on a set of auxiliary variables θ, for example, the

probabilities m, n and h appearing in the Hodgkin-Huxley (1952) model.
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In the case of a passive membrane, the conductance gα(θ) takes a constant (but different)

value for each species. The total transmembrane current density is obtained by summing the

transmembrane current densities of each ionic species to get

J =
∑

α

gα(V − Eα) = gM(V − E) , gM =
∑

α

gα , E =
∑

α

gα

gM

Eα . (27)

Thus the constitutive equation for the transmembrane current density of a passive membrane

is J = gM(V −E) where gM (mS/cm2) is the total membrane conductance and E plays the role

of a reversal potential. When the segment is a uniform cylinder with a membrane of constant

conductance, the contributions to IP and ID mimic formulae (26) for capacitative current and

are respectively

I IVDC

P =
G

6

[
2(VP − E) + (VD − E)

]
, −I IVDC

D =
G

6

[
(VP − E) + 2(VD − E)

]
(28)

where G is the total membrane conductance of the segment. The treatment of tapered segments

with non-uniform membrane conductance is presented in Appendix 3.

5 Comparison of the traditional and new approaches to com-

partmental modelling

Two simulation studies are used to compare the performance of the traditional and new com-

partmental models. These studies are based on a branched model neuron with known expression

for the somal potential in response to large scale exogenous input (see Appendix 4). The first

study examines the accuracy with which each type of compartmental model estimates this somal

potential, and uses the NEURON simulator (Hines and Carnevale, 1997) as an example of a

traditional compartmental model. The second study assesses the accuracy of the two types of

models by comparing the statistics of the spike train output generated by each model when the

test neuron is subjected to large scale synaptic input. Here a traditional compartmental model

developed by the authors is used. This model gave results identical to those of NEURON in

the first study. Finally, a time step of one microsecond is used in the numerical integration of

each compartmental model to ensure that errors in temporal integration make no significant

contribution to the error in the calculation of membrane potential.

5.1 The test neuron

One way to construct a branched test neuron with a closed form solution for the somal potential

is to choose the radii and lengths of its sections such that the Rall conditions for an equivalent

cylinder are satisfied (Rall, 1964). These conditions require that the sum of the three-halves

power of the diameters of the child limbs is equal to the three-halves power of the diameter of

the parent limb at any branch point, and that the total electrotonic length from a branch point

or the soma to a dendritic tip is independent of path. The test neuron illustrated in Figure 3
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satisfies these conditions. When the Rall conditions are satisfied, the effect at the soma of any

configuration of input on the branched model of the neuron is identical to the effect at the soma

of the unbranched equivalent cylinder with biophysical properties and configuration of input

determined uniquely from those of the original branched neuron (Lindsay et al., 2003).

�

(a)

(c)

(d)

(g)

(g)

(g)

(h)

(h)

(b)

(e)

(f)

(i)

(i)

(j)

(j)

(j)

Section Length µm Diameter µm

(a) 166.809245 7.089751

(b) 379.828386 9.189790

(c) 383.337494 4.160168

(d) 410.137845 4.762203

(e) 631.448520 6.345604

(f) 571.445800 5.200210

(g) 531.582750 2.000000

(h) 651.053246 3.000000

(i) 501.181023 4.000000

(j) 396.218388 2.500000

Figure 3: A branched neuron satisfying the Rall conditions. The diameters

and lengths of the dendritic sections are given in the right hand panel of

the figure. At each branch point, the ratio of the length of a section to the

square root of its radius is fixed for all children of the branch point.

The high degree of accuracy used in the specification of the dendritic radii and section lengths

of the test neuron is required to ensure that the equivalent cylinder is an adequate representa-

tion of the test neuron. The membrane of the test neuron is assigned a specific conductance of

0.091 mS/cm2 (gM) and specific capacitance of 1.0 µF/cm2 (cM), and has axoplasm of conduc-

tance 14.286 mS/cm (gA). With these biophysical properties, the equivalent cylinder has length

one electrotonic unit. The soma of the test neuron is assumed to have membrane area AS, and

specific conductance gS and specific capacitance cS identical to that of the dendritic membrane.

The analytical expression for its somal potential is given in Appendix 4.

5.2 First simulation study

In this study, the performance of a traditional and the new compartmental model is compared

by assessing the accuracy with which both models determine the time course of the somal

potential of the test neuron (Figure 3) when the neuron is subjected to large scale exogenous
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point input. Each simulation distributes 75 point inputs at random over the dendritic tree of

the test neuron, where each input has strength 2 × 10−5 µA. These inputs are then mapped

to positions on the Rall equivalent cylinder at the same electrotonic distance from the soma

(assumed to be a sphere of diameter 40 µm). The time course of the potential at the soma of

the equivalent cylinder due to the combined effect of these inputs is determined analytically

and taken to be the reference potential against which error in both compartmental models is

measured. The difference between a computed potential and its exact value is determined at

one millisecond intervals in the first 10 milliseconds of the simulation, and each difference is

divided by the exact potential at that time to get a relative measure of error. The simulation

procedure is repeated 2000 times to determine the statistics of the relative error for each of 13

different levels of spatial discretisation (number of compartments).

5.2.1 Results

The results for this study are set out in Table 2. This table shows the common logarithms of

the mean value of the modulus of the relative error and the standard deviation of that error

estimated ten milliseconds after the initiation of the stimulus. Similar results (not shown) hold

for all times at which the errors were estimated.

Compartments
(log10(Compartments))

Traditional New Model
log10(Mean)

Traditional New Model
log10(Standard Dev.)

17 (1.2305) −2.41151 −2.71945 −2.62290 −3.19338

21 (1.3222) −2.47233 −2.77674 −2.69851 −3.24583

34 (1.5314) −2.94299 −3.41196 −3.06731 −3.88820

41 (1.6127) −3.04729 −3.62138 −3.17081 −4.14997

54 (1.7323) −3.21258 −3.89150 −3.34889 −4.41251

61 (1.7853) −3.24692 −3.91268 −3.37653 −4.45051

75 (1.8750) −3.35180 −4.12056 −3.46881 −4.65463

82 (1.9138) −3.39846 −4.23567 −3.51591 −4.76498

93 (1.9684) −3.45602 −4.30636 −3.57633 −4.82045

193 (2.2855) −3.77417 −4.94731 −3.89829 −5.47886

293 (2.4668) −3.94409 −5.31876 −4.07811 −5.84771

390 (2.5910) −4.08234 −5.57349 −4.20025 −6.10791

495 (2.6946) −4.15996 −5.78252 −4.28525 −6.32790

Table 2: The result of 2000 simulations for each of 13 different levels of

discretisation used in the implementation of a traditional and new compart-

mental model. The common logarithms of the mean value of the modulus

of the relative error and the standard deviation of that error are estimated

at ten milliseconds after the initiation of the stimulus.
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The left hand panel of Figure 4 shows regression lines of the common logarithms of the modulus

of the mean relative error (denoted by RE ) for the traditional (dashed line) and new (solid

line) compartmental models on the logarithm of the number of compartments (denoted by N)

used to represent the model neuron. These lines, based on the data in Table 2, have equations

log10 REtraditional = −1.09 − 1.17 log10 N ,

log10 REnew = −0.17 − 2.10 log10 N
(29)

in which the regressions are achieved with adjusted R2 values2 of 97.4% and 99.5% respectively.

In view of the very high R2 values for these regression equations, a number of conclusions can

be drawn from this simulation study. For a fixed number of compartments, the error in the new

compartmental model is always less than that of the traditional model. The regression equations

(29) support the argument made in Section 2.1 that the error in a traditional compartmental

model in the presence of exogenous point current input is approximately O(1/n), whereas the

comparable error in the new compartmental model is approximately O(1/n2). In practical

terms, for example, the regression results (29) suggest that the new compartmental model with

100 compartments achieves approximately the same level of accuracy as a traditional model

with 500 compartments.
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Figure 4: The left panel shows the regression lines of the common logarithm

of the mean relative errors in the new compartmental model (solid line) and a

traditional compartmental model (dashed line) against the common logarithm

of the number of compartments. All errors are measured ten milliseconds after

initiation of the stimulus. The right panel shows the regression lines for the

standard deviations of the mean relative errors for the new compartmental

model (solid line) and for a traditional compartmental model (dashed line).

2
R

2 measures the proportion of the total variation of the dependent variable about its mean value that is

explained by the regression, and necessarily takes a value between zero and one expressed as a percentage.
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The standard deviation (SD) of the modulus of the relative error can be regarded as an indicator

of the reliability of a single application of the model. The right hand panel of Figure 4 shows

regression lines of the common logarithms of the standard deviation of the modulus of the

relative error for the traditional (dashed line) and new (solid line) compartmental models on

the logarithm of the number of compartments used to represent the model neuron. These lines,

based on the data in Table 2, have equations

log10 SD traditional = −1.32 − 1.12 log10 N ,

log10 SDnew = −0.60 − 2.14 log10 N
(30)

in which the regressions are achieved with adjusted R2 values of 98.7% and 99.4% respectively.

These regression lines show that the new compartmental model is more reliable than a traditional

compartmental model. For example, a traditional compartmental model requires at least 100

compartments to give a standard deviation of the modulus of the relative error that is smaller

than that of the new compartmental model using 40 compartments.

5.3 Second simulation study

In the second simulation study 100 synapses are distributed at random over the dendritic tree

of the test neuron illustrated in Figure 3. Each synapse is activated independently of all other

synapses, has a maximum conductance of 3 × 10−5 mS and a rise time of 0.5 msec. Activation

times for each synapse follow Poisson statistics with a mean rate of 30 pre-synaptic spikes per

second. Spikes are generated by the soma of the test neuron using Hodgkin-Huxley kinetics.

This study is based on 12 different levels of spatial discretisation (number of compartments) in

which each simulation of the traditional and new compartmental models use identical synaptic

firing times and identical numbers of compartments.

5.3.1 Results

Table 5 gives the spike rate of soma-generated action potentials based on 11 seconds of activity,

the first second of which is ignored.

Figure 5 illustrates the data set out in Table 3 in which the spike rates for the traditional model

(dashed line) and new model (solid line) are plotted against the common logarithm of N , the

number of compartments used in each simulation. As N is increased, the spike rates generated

by both models approach a common limit. However, the spike rate generated by the traditional

model approaches this limit more slowly and appears to oscillate as the limit is approached. The

spike rate obtained using the traditional model with 500 compartments is achieved in the new

model with only 100 compartments. These differences in the number of compartments required

to achieve the same level of accuracy in both models are identical to those observed in the first

study.
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Compartments
(log10(Compartments))

Traditional Model
Mean Firing Rate

New Model
Mean Firing Rate

34 (1.5314) 31.5 27.6

41 (1.6127) 30.3 27.9

54 (1.7323) 30.5 27.5

61 (1.7853) 29.8 27.2

75 (1.8750) 29.2 27.0

82 (1.9138) 28.5 27.0

93 (1.9684) 28.3 26.8

193 (2.2855) 26.5 26.5

293 (2.4668) 25.9 26.2

390 (2.5910) 26.2 26.2

495 (2.6946) 26.7 26.2

992 (2.9965) 26.0 26.1

Table 3: The spike rate estimated from a 10 second record of spike train

activity obtained from a traditional and the new compartmental model at

12 different levels of spatial discretisation (number of compartments).
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Figure 5: The spike rate plotted against the common logarithm of the number of

compartments for a traditional compartmental model (dashed line) and the new

compartmental model (solid line). The dotted line shows the expected spike rate.

5.3.2 Comparison of model-generated spike trains

It is clear from Figure 5 that the mean rate of the spike train generated by the new compart-

mental model converges more quickly to the theoretical mean spike rate than that generated
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by a traditional compartmental model. One would therefore infer from the behaviour of this

summary statistic that the spike train generated by the former is a more accurate representation

of the spiking behaviour of the test neuron in response to synaptic activity than that generated

by the latter. To investigate the validity of this inference requires an accurate comparison of

the times of occurrence of the spikes in the spike trains generated by each model with identical

synaptic activity applied to the test neuron. We take as our reference the times of occurrence

of the spikes generated in ten seconds using the new compartmental model with 100 compart-

ments (spike train N100). These spike times are compared with those generated by a traditional

compartmental model with 100 compartments and with 500 compartments3 (spike trains T100

and T500 respectively). The times of occurrence of spikes in the spike trains to be compared

are taken to be identical if they occur within one millisecond of each other. The comparison

between N100 and T100 revealed 244 spikes common to both spike trains (i.e. occurring within

one millisecond of each other). There were 24 spikes unique to N100 and 39 spikes unique to

T100. The comparison between N100 and T500 revealed 258 spikes common to both spike trains

with 10 spikes unique to N100 and 9 spikes unique to T500. Since the reference spike train N100

is common to both comparisons, it is clear that as the number of compartments in a traditional

model increases, the spike train generated by that model will conform more closely to that

generated by the new compartmental model with significantly fewer compartments.

6 Concluding remarks

We have demonstrated that it is possible to achieve a significant increase in the accuracy and

precision of compartmental models by developing a new compartmental model in which com-

partments have two potentials – one at either end of the segment which the compartment

represents. The new compartment acts as fundamental unit in the construction of a model of a

branched dendrite. When these compartments are connected by requiring continuity of potential

and conservation of current at segment boundaries, they provide a new type of compartmental

model with a mathematical form identical to that of a traditional model in the sense that both

types of compartmental model involve only nearest neighbour interactions. One demonstrated

benefit of the new compartmental model is that it provides a mechanism to take account of the

exact location of point process input by contrast with traditional compartmental models which

would assign this input to an accuracy of half the length of a segment. We would anticipate

that the application of the new compartmental model would be most useful in association with

experiments in which the precise timing of spikes is thought to be important (e.g., Oram et

al., 1999 and the references therein) or in studies investigating the influence of the location of

synaptic input on the mean rate of the spike train output (e.g., Poirazi et al., 2003).

3All the simulations were run on a PC with dual Athlon 1500MP processors. The times required to simulate

10 seconds of spike train data were 61 minutes for the new compartmental model with 100 compartments, 41

minutes and 353 minutes for a traditional compartmental model with 100 and 500 compartments respectively. In

the presence of point current input alone, the computational times for both models are identical.
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Appendix 1 – Numerical estimation of perturbations to axial current

The example in Subsection 4.2 demonstrates that synaptic and exogenous input do not act

independently. This means that both types of point process input must be treated simultane-

ously in the construction of the equations to determine the perturbations IP and ID of the axial

current. The equations for the perturbations in axial current are constructed by replacing Ik in

equations (14, 16 and 17) by IPD + Îk where Îk is the perturbation to Ik. If λ = λk is the site

of an exogenous input then the appropriate equation for the perturbed currents is

Îk − Îk+1 = Ik(t) , (31)

whereas if λ = λk is the site of a synapse with conductance gk(t), the appropriate equation is

Îk − Îk+1 +
gkh

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Îj = Ik(t) (32)

where the current Ik(t) is defined by the formula

Ik(t) = gk(t)
[
(1 − λk)

rP

rk
VP + λk

rD

rk
VD − Ek

]
. (33)

The derivation of equation (32) takes advantage of the identity

k∑

j=1

(λj − λj−1)

rj−1 rj
=

λk

rP rk
,

which can be established by induction. Note that expression (33) for Ik(t) when λ = λk is a

synapse is precisely the current that would be expected to flow at the synapse if the distribution

of potential on the segment was described by expression (4). Finally, equation (17) simplifies to

n+1∑

j=1

(λj − λj−1)rP rD

rj−1 rj
Îj = 0 (34)

where the constant multiplier rP rD has been added without loss to make the coefficients of this

equation comparable to those appearing in the first n equations. Equations (31,32 and 34) may

be represented compactly in matrix notation by

A Î + GC Î = I (35)

where Î = [Î1, · · · , În+1]
T is the (n + 1) dimensional column vector of perturbations in axial

current, I = [I1, · · · , In, 0 ]T and A is the (n + 1) × (n + 1) matrix




1 −1 0 · · · · · · 0

0 1 −1 · · · · · · 0

0 0 1 · · · · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 −1

λ1rPrD

r0r1

(λ2 − λ1)rPrD

r1r2

(λ3 − λ2)rPrD

r2r3
· · ·

(λn − λn−1)rPrD

rn−1rn

(1 − λn)rPrD

rnrn+1





. (36)
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Briefly, G is an (n+1)× (n+1) diagonal matrix in which the (k, k) entry is zero if λk is the site

of an exogenous input and takes the value gk(t) if λk is the site of a synapse. The (n + 1, n + 1)

entry of G is always zero. The matrix C is a lower triangular matrix of type (n + 1) × (n + 1)

in which all the nonzero entries in the kth column take the value (λk − λk−1)/(πgArk−1 rk).

Multiple point inputs

To take account of the influence of the matrix GC in the solution of equation (35), the algorithm

AÎ(m+1) = I − GCÎ(m) (37)

is iterated with initial condition AÎ(0) = I. Although it can be demonstrated that the matrix

A has a simple closed form expression for its inverse, it is not (numerically) efficient to use

this expression to solve equation (37). Instead, we observe that A has an LU factorisation in

which U is the (n + 1) × (n + 1) upper triangular matrix with ones everywhere in the main

diagonal, negative ones everywhere in the super-diagonal and zero everywhere else, and L is the

(n + 1) × (n + 1) lower triangular matrix





1 0 0 0 · · · · · · 0

0 1 0 0 · · · · · · 0

0 0 1 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·

λ1 rP

r1

λ2 rP

r2

λ3 rP

r3

λ4 rP

r4
· · ·

λn rP

rn
1





. (38)

Since I is a linear combination of VP, VD and a voltage independent term, then the solution to

equation (37) has general representation

Î = φ1(t)VP + φ2(t)VD + φ3(t) (39)

where φ1(t), φ2(t) and φ3(t) satisfy

A φ1 =
[
g1(1 − λ1)

rP

r1
, · · · , gn(1 − λn)

rP

rn
, 0

]T

− GC φ1 ,

A φ2 =
[
g1λ1

rD

r1
, · · · , gnλn

rD

rn
, 0

]T

− GC φ2 ,

A φ3 = −
[
g1E1, · · · , gnEn, 0

]T

− GC φ3 .

(40)

The equations (40) for φ1(t), φ2(t) and φ3(t) may be solved easily by an iterative procedure

based on the sparse LU factorisation of A. If the conductances g1, · · · , gn are sufficiently small,

the solution of equations (40) is well approximated by ignoring the second term on the right

hand side or equations (40). This approximation is equivalent to using the partitioning rule (7)

in combination with formula (4) for the membrane potential.

Special case of exogenous input
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If λ1, · · · , λn are sites of exogenous input I1, · · · In then G = 0 in equation (37) and I is

the vector of exogenous currents. In this case, expressions (10) for IP and ID are obtained

immediately as the first and last entries in the solution Î of equation A Î = LU Î = I.

Appendix 2 – The partitioning of capacitative current on tapered cylinders

Recall from expressions (7) that the contributions made to the proximal and distal perturbations

to the axial current as a consequence of capacitative transmembrane current on a tapered

segment with membrane of variable specific capacitance are respectively

I cap

P = 2π rPh
[
rP

dVP

dt

∫ 1

0

(1 − λ)2cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

]
,

−I cap

D = 2π rDh
[
rP

dVP

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ2cM(λ) dλ

(1 − λ) rP + λ rD

]
.

(41)

For tapered segments (rP 6= rD) with membranes of non-uniform specific capacitance, the inte-

grals in (41) have values

I cap

P = 2πh rP

[
cPψ(rP, rD) + cDφ(rP, rD)

]dVP

dt

+ 2πh
[
cPrDφ(rP, rD) + cDrPφ(rD, rP)

]dVD

dt
,

−I cap

D = 2πh
[
cPrDφ(rP, rD) + cDrPφ(rD, rP)

]dVP

dt

+ 2πhrD

[
cPφ(rD, rP) + cDψ(rD, rP)

]dVD

dt

(42)

where cM(λ) = (1 − λ)cP + λ cD and the auxiliary functions φ(x, y) and ψ(x, y) are defined by

φ(x, y) =
x

6(x − y)3

[
x2 − 5xy − 2y2 +

6xy2

x − y
log

x

y

]
,

ψ(x, y) =
x

6(x − y)3

[
2x2 − 7xy + 11y2 −

6y3

x − y
log

x

y

]
.

(43)

The evaluation of the integrals in expression (41) is facilitated by defining the auxiliary integrals

K1 =

∫ 1

0

(1 − λ)2ĉM(λ) dλ

r̂(λ)
, K2 =

∫ 1

0

λ(1 − λ)ĉM(λ) dλ

r̂(λ)
, K3 =

∫ 1

0

λ2ĉM(λ) dλ

r̂(λ)

and observing that K1, K2 and K3 can be determined easily from the identities

K1 + 2K2 + K3 =

∫ 1

0

ĉM(λ) dλ

r̂(λ)
,

rP K1 + rD K2 =

∫ 1

0
(1 − λ)ĉM(λ) dλ ,

rP K2 + rD K3 =

∫ 1

0
λ ĉM(λ) dλ .

The results given in subsection 4.3.1 for a uniform segment (rP = rD) are obtained from formulae

(42) by replacing φ(x, y) and ψ(x, y) with their respective limiting values of 1/12 and 1/4 where

each limit is taken as x → y.
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Appendix 3 – Partitioning of voltage-dependent current on tapered cylinders

The construction of I cap

P and I cap

D for a membrane with non-constant specific capacitance provides

the framework for treating intrinsic voltage-dependent transmembrane current. For tapered

segments with non-constant membrane conductance, the contributions to the perturbations in

the axial current at the proximal and distal boundaries of the segment are identical to expressions

(42) with cP replaced by gP(VP; θ) and cD replaced by gD(VD; θ) . These contributions are

I IVDC
P = 2πh rP

[
gP(VP; θ)ψ(rP, rD) + gD(VD; θ)φ(rP, rD)

]
(VP − E)

+ 2πh
[
gP(VP; θ) rDφ(rP, rD) + gD(VD; θ) rPφ(rD, rP)

]
(VD − E) ,

−I IVDC
D = 2πh

[
gP(VP; θ) rDφ(rP, rD) + gD(VD; θ) rPφ(rD, rP)

]
(VP − E)

+ 2πh rD

[
gP(VP; θ)φ(rD, rP) + gD(VD; θ)ψ(rD, rP)

]
(VD − E)

(44)

where the auxiliary functions φ(x, y) and ψ(x, y) are defined in (43).

Appendix 4 – Analytical solution for somal potential of test neuron

It may be shown that V (t), the deviation of the somal transmembrane potential from its resting

value as a result of a distribution I(x, t) of current on a uniform cylindrical dendrite of radius

a and length l attached to a soma is

V (t) = e−t/τ
[
φ0(t) +

∑

β

φβ(t)e−β2t/L2τ cos β
]
, L = l

√
2gM

agA

(45)

where τ is the time constant of the somal and dendritic membranes and gM and gA have their

usual meanings. The summation is taken over all the solutions β of the transcendental equation

tan β + γβ = 0 where γ (constant) is the ratio of the total membrane area of the soma to

the total membrane area of the dendrite. The functions φ0(t) and φβ(t) are solutions of the

differential equations

dφ0

dt
= −

et/τ

CD + CS

[
IS(t) +

∫ l

0
I(x, t) dx

]
,

dφβ

dt
= −

2e(1+β2/L2)t/τ

CD + CS cos2 β

[ ∫ 1

0
I(x, t) cos β(1 − x/l) dx + cos β IS(t)

] (46)

with initial conditions φ0(0) = φβ(0) = 0, that is, the neuron is initialised at its resting potential.

The parameters CS and CD denote respectively the total membrane capacitances of the soma

and dendrite, and IS(t) is the current supplied to the soma.

In the special case in which point currents I1(t), · · · , In(t) act at distances x1, · · ·xn from the

soma of the uniform cylinder, the corresponding coefficient functions φ0 and φβ satisfy

dφ0

dt
= −

et/τ

CD + CS

[
IS(t) +

n∑

k=1

Ik(t)
]
,

dφβ

dt
= −

2e(1+β2/L2)t/τ

CD + CS cos2 β

[ n∑

k=1

Ik(t) cos β(1 − xk/l) + cos β IS(t)
]
.

(47)
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