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Abstract

Compartmental models of dendrites are the most widely used tool for inves-

tigating their electrical behaviour. Traditional compartmental models assign

a single potential to a compartment and consequently treat segments as iso-

potential regions of dendrite. All input is assigned to the centre of a segment

independent of its location on the segment. By contrast, the compartmental

model introduced in this article assigns a potential to each end of a segment,

and takes into account the effect of input location on model solution by parti-

tioning input between the axial currents at the proximal and distal boundaries

of segments. For a given number of segments, the new and traditional com-

partmental models use the same number of locations at which the membrane

potential is to be found. However, the solution achieved by the new compart-

mental model gives an order of magnitude better accuracy and precision than

that achieved by a traditional model.

2



1 Introduction

Compartmental models have become important tools for investigating the behaviour of neurons

to the extent that a number of packages exist to facilitate their implementation (e.g. Hines and

Carnevale 1997; Bower and Beeman 1997). The use of compartmental models is motivated by the

desire to reduce the mathematical complexity inherent in a continuum description of a neuron.

This simplification is achieved by replacing the family of partial differential equations defining

the continuum description of a neuron by a compartmental model of that neuron in which the

behaviour of the neuron is described in terms of the solution of a family of ordinary differential

equations (Rall, 1964). The traditional approach to compartmental modelling, introduced by

Rall (1964), assumes that a “lump of membrane becomes a compartment; the rate constants

governing exchange between compartments are proportional to the series conductance between

them”. Figure 1 illustrates the Rall interpretation of a how a dendrite can be represented in

terms of compartments (neuronal membrane) and linking resistances (the axoplasm).

�Membrane Membrane

Figure 1: The Rall segmentation of a length of dendrite into lumped regions.

The membrane defines the compartment, and the resistive property of the

axoplasm is represented in the model by resistors linking compartments

This partitioning of a dendrite into repeating units is analogous to the representation of a

transmission line as a ladder network of simple electrical circuits. In the case of a neuron, Rall

defines a compartment to be the mathematical description of the effect of input acting on a

localised region of neuronal membrane, and models this by an electrical circuit. The resistive

properties of the axoplasm determine the linking resistances between compartments. Other

authors (e.g. Segev and Burke, 1998) treat the neuronal segment, including the membrane

and axoplasm, as the compartment. However both definitions lead to the same mathematical

model simply because the iso-potential property, implicit in Rall (1964) and explicit in Segev and

Burke’s (1998) definition of a compartment, dominates the construction of the underlying family

of ordinary differential equations. However, the definition of a compartment as an iso-potential

region is unsatisfactory since a compartment defined in this way cannot act as a fundamental unit

in the construction of a model dendrite for two good reasons. First, iso-potential compartments

must exist in pairs to support axial current flow, and second, half compartments are required

to represent branch points and dendritic terminals (e.g. Segev and Burke, 1998).

What is required is a definition of a compartment in which the compartment exists as an inde-

pendent unit that can act as a building block for a model of the electrical behaviour of a neuron,

where it is understood that “the function of the model is to represent the necessity that exists in

nature by the logical necessity of the model. In the case of a good model one parallels the other”

3



(Regnier, 1964). A traditional compartmental model does not satisfy this criterion since its iso-

potential structure provides no mechanism to differentiate between input at different locations

within the segment represented by the compartment. It is precisely through the definition of a

compartment, which allows this distinction to be made, that the new compartment model gives

superior accuracy and precision to that of a traditional model.

The accuracy with which a compartmental model describes the behaviour of a neuron may

be assessed from the knowledge that all compartmental models converge to the solution of

the continuum model of that neuron as the maximum length of segment approaches zero. To

take advantage of this result, a test neuron is constructed for which the continuum description

has an exact solution. This test neuron and its exact solution are used as a reference against

which the accuracy of a traditional compartmental model and the new compartmental model

are compared.

2 Structure of compartmental models

We are concerned with compartmental models of dendrites. In this context, the fundamental

morphological unit is the dendritic section, defined to be the length of dendrite connecting one

branch point to a neighbouring branch point, to the soma or to a terminal. Compartmental

modelling begins by subdividing each section of a dendrite into smaller contiguous units called

segments which are typically regarded as uniform circular cylinders (e.g. Segev and Burke,

1998) or tapered circular cylinders (Hines and Carnevale 1997). The mathematical model of a

dendrite is constructed by representing each segment by a compartment, and connecting these

in a branching pattern corresponding to that of the dendrite. When joined in this way, each

compartment interacts only with compartments representing adjacent segments. Note that some

numerical schemes for the solution of the continuum model (e.g., Finite Differences) may have

this “nearest neighbour” property, but it would be a conceptual error to interpret such equations

as a compartmental model. The “nearest neighbour” feature of these equations is a contingent

property of the numerical algorithm1 and vanishes with a different choice of algorithm, whereas

the “nearest neighbour” feature of a compartmental model is unavoidable.

In a traditional compartmental model, the compartment has a single potential which is viewed

as the potential at the centre of the segment represented by that compartment. This potential

may be thought of as the average potential of that segment. All voltage-regulated input to the

segment, independent of its location, acts with this potential. The assumption that all input

to a segment acts with a single potential irrespective of location on the segment implies that a

traditional compartmental model regards dendritic segments as iso-potential regions of dendrite.

1For example, a second order central difference approximation for the spatial derivatives of the continuum

model will be structurally identical to a compartmental model when the error structure of the discretisation is

ignored. However, the “nearest neighbour” property of the numerical algorithm is absent for a higher order finite

difference scheme.

4



Spatial variations in biophysical properties of the dendrite and its morphology are expressed

through differences in the properties of compartments and their linking resistors.

By contrast, the new compartmental model assigns two potentials to a compartment, one at

each boundary of the segment represented by the compartment. Compartments constructed

in this way can serve as the basic building blocks of a model dendrite because they sustain

axial currents independent of neighbouring compartments. Most importantly, the assumption

that transmembrane current acts at the centre of a segment, as in a traditional compartmental

model, is now inappropriate and must be replaced in the new compartmental model by a rule

to partition transmembrane current between the axial currents flowing at segment boundaries.

As with the traditional compartmental model, compartments in the new model are connected

together by enforcing conservation of axial current at segment boundaries, dendritic branch

points and dendritic terminals.

3 Distributed and point input to a segment

In general, segments receive distributed and point sources of input each of which require a

different mathematical treatment. The current supplied by distributed input such as intrinsic

voltage-dependent current or capacitative current is proportional to the surface area of the

segment on which it acts, whereas the current supplied to a segment at a synapse or by an

exogenous point input is independent of the size of the segment. An implicit assumption of

a compartmental model is that distributed current input to a segment is small by comparison

with axial current flowing along the segment.

To appreciate why this assumption is reasonable, consider a cylindrical dendritic segment of

radius r (cm), length h and with membrane of constant conductance gM (mS/cm2). Sup-

pose that axoplasm has constant conductance gA (mS/cm) and that a potential difference

V (mV) exists between the segment boundaries, then the axial current along the segment is

IA = πr2gAV/h (µA) and the total distributed current crossing the membrane of the segment

is IM = 2πrhgM (V/2). The ratio of the distributed current to the axial current is therefore

Distributed current

Axial current
=

IM

IA

=
πrhgM V

πr2gA (V/h)
=

h2gM

rgA

=
(h

r

)2 rgM

gA

. (1)

For a typical dendritic segment rgM/gA is small (say ≈ 10−5), and therefore distributed current

acting on a segment is small by comparison with axial current for “short” segments. On the

other hand, segments several orders of magnitude longer than their radius can be expected to

have distributed and axial currents of similar magnitude. An important property of a compart-

mental model is that segments are not excessively long by comparison with their radius. In the

treatment of distributed current, the development of the new compartmental model makes ex-

plicit use of the assumption that distributed current is much smaller than axial current. Since

this assumption may not be valid for point sources of current, it will not be made for the

treatment of these current in the new compartmental model.
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3.1 Axial current in the absence of distributed and point current input

Figure 2 illustrates a dendritic segment of length h (cm) where λ ∈ [0, 1] is the fractional

distance of a point of the segment from its proximal end (λ = 0). Let rP and rD be the radii

of the segment at its proximal and distal boundaries respectively, let VP(t) and VD(t) be the

membrane potentials at these boundaries and let IPD be the axial current in the segment in the

absence of transmembrane current.

�
IPDVP

λ = 0

P

rP

VD

λ = 1

D

rDh

Figure 2: A segment of length h (cm)

is illustrated. In the absence of trans-

membrane current, membrane poten-

tials VP and VD at the proximal and

distal boundaries of the segment gen-

erate axial current IPD.

The membrane of the segment in Figure 2 is formed by rotating the straight line PD about the

axis of the dendrite to form the frustum of a cone of radius

r(λ) = (1 − λ)rP + λrD , λ ∈ [0, 1] . (2)

Assuming that the segment is filled with axoplasm of constant conductance gA and that no

current crosses its membrane, then the relationship between VP, VD and IPD can be constructed

by integrating

IPD = −
gAπ

h

[
(1 − λ)rP + λrD

]2 dV

dλ

with boundary conditions V (0) = VP and V (1) = VD. This calculation shows that the potentials

VP and VD give rise to axial current

IPD =
πgArPrD

h
( VP − VD ) (3)

in the absence of distributed and point currents, and that the potential at point λ is

V (λ) =
VP (1 − λ) rP + VD λ rD

(1 − λ) rP + λ rD

. (4)

Expressions (3) and (4) are estimates of the axial current flowing along a segment and the

potential distribution within the segment in the absence of transmembrane current.

3.2 Motivation for partitioning point current input - model accuracy

One inescapable feature of a traditional compartmental model is that small variations in the

location of segment boundaries, as might occur when a dendrite is represented by segments,

may exert a large influence on the solution of the resulting mathematical model. Consider, for
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example, a point input close to a segment boundary. A small variation in the position of that

boundary may change the assigned location of this input from the centre of one segment to that

of an adjacent segment. With respect to the mathematical model, the location of this input

is therefore determined only to an accuracy of half a segment length, and this indeterminacy

will in turn generate a model solution that is particularly sensitive to segment boundaries –

small changes in these boundaries may lead to large changes in the model solution. Of course,

with a small number of point sources of input, this problem can be avoided in a traditional

compartmental model by arranging that only one point input falls on a segment, and that the

location of this input coincides with the centre of the segment. However, this strategy is not

feasible when dealing with large scale point input. What is required is a procedure that describes

the effect of point input on a dendritic section in a way that is largely insensitive to how that

section is represented by segments. It is essential to recognise that there are two primary sources

of error in the construction of a compartmental model; the first is the well-documented effect of

discretising a continuous dendrite, and the second pertains to error introduced by the placement

of input on this dendrite. In a traditional compartmental model with n compartments, the first

type of error is O(1/n2) (by analogy with the finite difference representation of derivatives),

but it is not widely recognised that the second type of error is O(1/n). Since the accuracy of

any model must be governed by the least accurate contribution to the model, it is clear that in

practice a traditional model is O(1/n) accurate. This theoretical observation is supported by the

simulation exercises of Subsections 7.1 and 7.2. By contrast with a traditional compartmental

model, the new compartmental model describes the influence of input to an accuracy of O(1/n2),

and therefore one would anticipate that it does not degrade the overall accuracy of the model.

This assertion is testable by a simulation exercise.

3.3 Partitioning rule for transmembrane current

In compartmental modelling the effect of input current enters the mathematical model at points,

or nodes, at which the membrane potential is known. In a traditional model, these nodes are

at the centres of segments, whereas in the new model they are at the boundaries of segments.

In the new model, input at any location is partitioned between the nodes at the proximal and

distal boundaries of the segment on which the input acts. This procedure ensures that the

solution of the mathematical model is insensitive to small changes in the location of segment

boundaries simply because changes in these boundaries also affects how the input is partitioned

between nodes.

In the mathematical model, the effect of input to a segment is treated as perturbations IP and

ID to the axial current IPD at the proximal and distal boundaries of a segment. Axial current

IPD + IP is assumed to leave the proximal boundary of a segment in the direction of its distal

boundary, while axial current IPD + ID is assumed to arrive at the distal boundary of a segment

from the direction of its proximal boundary. The perturbations IP and ID must satisfy the
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conservation of current condition

(IPD + ID) − (IPD + IP) + h

∫ 1

0
J(λ, t) dλ = 0 → IP − ID = h

∫ 1

0
J(λ, t) dλ (5)

where hJ(λ, t) dλ + o(dλ) is the transmembrane current crossing the segment in (λ, λ + dλ).

The task is to construct expressions for IP and ID that satisfy (5) for all constitutive forms for

J(λ, t). In the new compartmental model, transmembrane current acting at point λ is divided

between the proximal and distal boundaries of a segment in inverse proportion to the resistance

of the segment lying between the point λ and that boundary. If RP(λ) is the axial resistance of

the portion of segment lying between the point λ and the proximal boundary of the segment,

and RD(λ) is the axial resistance of the portion of segment lying between the point λ and the

distal boundary of the segment, then

RP(λ) =
λh

πgArPr(λ)
, RD(λ) =

(1 − λ)h

πgArDr(λ)
, RP(λ) + RD(λ) =

h

πgArPrD

. (6)

The rule for partitioning transmembrane current now leads to the expressions

IP = h

∫ 1

0

(1 − λ) rP J(λ, t) dλ

(1 − λ) rP + λ rD

, −ID = h

∫ 1

0

λ rD J(λ, t) dλ

(1 − λ) rP + λ rD

, (7)

which clearly satisfy identically condition (5) for the conservation of current.

3.4 Specification of transmembrane current

Transmembrane current is usually assumed to consist of four distinct components: capacitative

current, intrinsic voltage-dependent current, synaptic current and exogenous current. Total

transmembrane current is represented by
∫

2πr cM

∂V

∂t
dx +

∫
2πr JIVDC(V ) dx +

∑
JSYN(Vsyn) +

∑
IEX (8)

where the integrals and summations are taken over the length of a segment. In this expression

cM (µF/cm2) is the specific capacitance of the segment membrane, V (x, t) is the distribution

of membrane potential at time t (msec), JIVDC(V ) (µA/cm2) is the density of transmembrane

current due to intrinsic voltage-dependent channel activity, JSYN(Vsyn) (µA) describes synaptic

input and IEX (µA) describes exogenous input. Although the specific capacitance of dendritic

membrane is normally taken to be constant in neuronal modelling, it will be treated here as

a function of position to show how transmembrane current of this type may be incorporated

into the new compartmental model. For a segment of length h, the expression for J(λ, t)

corresponding to formula (8) is

hJ(λ, t) = 2πhr(λ) cM(λ)
∂V (λ, t)

∂t
+ 2πhr(λ)JIVDC(V (λ, t))

+
∑

k

JSYN(Vsyn) δ(λ − λk) +
∑

k

IEX(t) δ(λ − λk)
(9)

where λk denotes the relative location of the kth synapse or exogenous input with respect to

the proximal boundary of the segment (λ = 0).
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4 Representation of partitioned transmembrane current

Further progress requires expressions for IP and ID in terms of the biophysical and morphological

properties of the segment and the membrane potentials at its proximal and distal boundaries.

Each component of the transmembrane current (9) is examined separately.

4.1 Point sources of transmembrane current

There are two types of point sources of transmembrane current: point currents depending

on transmembrane potential (synaptic current), often modelled by the constitutive equation

I = g(t)(V − E) where E is the reversal potential associated with the synapse and g(t) is the

time course of the synaptic conductance, and those point currents which are independent of

membrane potential (exogenous current).

Suppose that λ1, · · · , λn are sites of point input I1, · · · In to the segment, then the expressions

for IP and ID are

IP =
n∑

k=1

rP

rk
(1 − λk) Ik , −ID =

n∑

k=1

rD

rk
λk Ik (10)

where rk = (1 − λk) rP + λk rD. In the special case of exogenous input only, Ik = Ik(t) and

expressions (10) give the exact partitioning of exogenous point input. When synaptic input is

present, the expressions for IP and ID will contain the (unknown) membrane potentials at the

synapses. The application of the partitioning rule will require these potentials to be estimated

in terms of known functions and the potentials at the proximal and distal boundaries of the

segment. One obvious way to do this is to use the potential distribution (4). However, the

derivation of (4) assumed that transmembrane current was negligible by comparison with axial

current, thus its efficacy in estimating the potential at a synapse relies on the validity of that

assumption. It will be shown in Subsection 4.3.1 that the use of formula (4) for a single synapse

overestimates the influence of that synapse. This observation suggests that the partitioning

rule needs to be generalised to include situations in which point input current is not small by

comparison with axial current.

4.2 Generalisation of partitioning rule for point input

The partitioning rule may be generalised by recognising that the partitioning of transmembrane

current does not have to be between axial currents at the proximal and distal boundaries of the

segment, but may be applied to nearest neighbour sites of a point input, although, of course,

the proximal and distal boundaries of the segment may be nearest neighbours to one of these

sites. This application of the partitioning rule is equivalent to considering the balance between

axial current and point current at each input site ignoring the presence of distributed current

between sites. Figure 3 is a schematic representation of a segment of length h illustrating the

relative locations λ1, · · · , λn of n point inputs I1, · · · In on a segment. Suppose axial current
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Ik flows to the point λk from the point λk−1 and that Vk is the potential at the point λk.

�• • • • • • •

λ0 = 0 λ1 λk−1 λk λn−1 λn λn+1 = 1

I1 I2 Ik Ik+1 In In+1

I1 Ik−1 Ik In−1 In

Figure 3: Configuration of point input to a dendritic segment

of length h. Here Ik = gk(t)(Vk−Ek) in the case of a synapse

at λk or Ik = Ik(t) in the case of an exogenous input.

The potentials V1, · · · , Vn at the points λ1, · · · , λn are related to the currents I1, · · · , In+1 by

making the appropriate replacements in formula (3) to get

Ik =
πgArk−1 rk

h(λk − λk−1)
(Vk−1 − Vk ) , k = 1, · · · , (n + 1) (11)

where it is understood that λ0 = 0, λn+1 = 1, r0 = rP, rn+1 = rD, V0 = VP and Vn+1 = VD. It

follows directly from (11) that

Vk = VP −
h

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Ij , k = 1, · · · , (n + 1) . (12)

If λk is the point of application of an exogenous input of strength Ik(t) then

Ik+1 + Ik(t) = Ik . (13)

On the other hand, if there is a synapse at λk, then Ik = gk(t)(Vk − Ek) and conservation of

current requires that

Ik+1 + gk(Vk − Ek) = Ik . (14)

Formula (12) for Vk is now used to rewrite equation (14) in terms of axial currents to get

Ik − Ik+1 +
gkh

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Ij = −gkEk + gkVP . (15)

Thus, the current conservation condition at the points λ1, · · · , λn gives rise to n equations for

the (n + 1) currents I1, · · · , In+1. In order to complete the system of equations that determine

I1, · · · , In+1, it is essential to note that the potentials at the proximal and distal boundaries of

the segment are known, and that this condition constrains the values of these currents to satisfy

h

πgA

n+1∑

j=1

(λj − λj−1)

rj−1 rj
Ij = VP − VD . (16)

This condition is obtained from equation (12) by asserting that Vn+1 = VD. Since it is the

perturbations to the axial currents at the proximal and distal boundaries of the segment that

are sought, and not the currents themselves, it is convenient to replace Ik in equations (13, 15
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and 16) by IPD + Îk where Îk is the perturbation to Ik. If λk is the site of an exogenous input

then it follows immediately that

Îk − Îk+1 = Ik(t) . (17)

On the other hand, if λk is the site of a synapse, then the identity

k∑

j=1

(λj − λj−1)

rj−1 rj
=

λk

rP rk
, (18)

which can be established by induction, can be used to verify that Î0, Î1, · · · În+1 satisfy

Îk − Îk+1 +
gkh

πgA

k∑

j=1

(λj − λj−1)

rj−1 rj
Îj = Ik(t) (19)

where the current Ik(t) is defined by the formula

Ik(t) = gk(t)
[
(1 − λk)

rP

rk
VP + λk

rD

rk
VD − Ek

]
. (20)

Note that Ik(t) is precisely the current that would be expected to flow at the kth synapse if

the distribution of potential along the length of the segment is well described by expression (4),

that is, the potential distribution on the assumption that transmembrane current acting on the

segment is negligible compared with axial current. Finally, equation (16) simplifies to

rP rD

n+1∑

j=1

(λj − λj−1)

rj−1 rj
Îj = 0 (21)

where the constant multiplier rP rD has been added without loss to make the coefficients of this

equation comparable to those appearing in the first n equations. Equations (17,19 and 21) may

be represented compactly in matrix notation by

A Î + GC Î = I (22)

where Î = [Î1, · · · , În+1]
T is the (n + 1) dimensional column vector of perturbations in axial

current, I = [I1, · · · , In, 0 ]T and A is the (n + 1) × (n + 1) matrix




1 −1 0 · · · · · · 0

0 1 −1 · · · · · · 0

0 0 1 · · · · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 −1

λ1rPrD

r0r1

(λ2 − λ1)rPrD

r1r2

(λ3 − λ2)rPrD

r2r3
· · ·

(λn − λn−1)rPrD

rn−1rn

(1 − λn)rPrD

rnrn+1





. (23)

Briefly, G is an (n+1)× (n+1) diagonal matrix in which the (k, k) entry is zero if λk is the site

of an exogenous input and takes the value gk(t) if λk is the site of a synapse. The (n + 1, n + 1)

entry of G is always zero. The matrix C is a lower triangular matrix of type (n + 1) × (n + 1)

in which all the appropriate entries in the kth column take the value (λk − λk−1)/(πgArk−1 rk).
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4.3 Special and general solutions of the point input partitioning equations

Prior to considering the general solution of equation (22) it is instructive to examine two special

applications; the first concerns the derivation of the perturbations IP and ID in the case of a

single synaptic input to a segment, and the second concerns the derivation of these perturbations

in the presence of exogenous input only.

4.3.1 Single synaptic input

In the case of a single synaptic input at λ1, equations (22) become

(
1 +

λ1hg1

πgArPr1

)
Î1 − Î2 = I1(t) ,

λ1Î1

rPr1
+

(1 − λ1)Î2

r1rD

= 0 (24)

with solutions

IP = Î1 =
rP

r1

(1 − λ1)I1(t)

1 + γ
, −ID = −Î2 =

rD

r1

λ1I1(t)

1 + γ
, γ =

λ1(1 − λ1)hg1

πgAr2
1

. (25)

Note that formulae (10) are recovered for a single synapse by setting γ = 0 in the exact solutions

(25). Therefore the use of formulae (10) overestimates the contributions made by the synapse

at λ1 to IP and ID whenever the potential at the synapse is estimated by expression (4). These

overestimates are maximum when λ1 = 1/2 – the synapse is located at the centre of the segment

– and decrease with length of segment, and independently, with the state of synaptic activation.

In the case of a single synapse, the function γ describes the contribution made by the matrix

GC in the determination of IP and ID. The non-negative property of γ arises from the fact

that the entries of G and C are always non-negative independently of the number of synapses.

Consequently, if the influence of GC is ignored in the derivation of IP and ID, the resulting

values of these currents will overestimate the influence of the synaptic activity acting on the

segment. Put another way, if transmembrane current due to synaptic activity is regarded as

negligible by comparison with axial current, so that the potential distribution along the segment

is determined from expression (4), then the resulting model will overestimate the influence of

the synaptic activity.

4.3.2 Multiple point inputs

To take account of the influence of the matrix GC in the solution of equation (22), the algorithm

AÎ(m+1) = I − GCÎ(m) (26)

is iterated with initial condition AÎ(0) = I. Although it can be demonstrated that the matrix

A has a simple closed form expression for its inverse, it is not (numerically) efficient to use

this expression to solve equation (26). Instead, we observe that A has an LU factorisation in

which U is the (n + 1) × (n + 1) upper triangular matrix with ones everywhere in the main
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diagonal, negative ones everywhere in the super-diagonal and zero everywhere else, and L is the

(n + 1) × (n + 1) lower triangular matrix




1 0 0 0 · · · · · · 0

0 1 0 0 · · · · · · 0

0 0 1 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·

λ1 rP

r1

λ2 rP

r2

λ3 rP

r3

λ4 rP

r4
· · ·

λn rP

rn
1





. (27)

Since I is a linear combination of VP, VD and a voltage independent term, then the solution to

equation (22) has general representation

Î = φ1(t)VP + φ2(t)VD + φ3(t) (28)

where φ1(t), φ2(t) and φ3(t) satisfy

A φ1 =
[
g1(1 − λ1)

rP

r1
, · · · , gn(1 − λn)

rP

rn
, 0

]T

− GC φ1 ,

A φ2 =
[
g1λ1

rD

r1
, · · · , gnλn

rD

rn
, 0

]T

− GC φ2 ,

A φ3 = −
[
g1E1, · · · , gnEn, 0

]T

− GC φ3 .

(29)

The equations (29) for φ1(t), φ2(t) and φ3(t) may be solved easily by an iterative procedure

based on the sparse LU factorisation of A. If the conductances g1, · · · , gn are sufficiently small,

the solution of equations (29) is well approximated by ignoring the second term on their right

hand side. This approximation is equivalent to using the partitioning rule (7) in combination

with formula (4) for the membrane potential.

4.3.3 Exogenous input

If λ1, · · · , λn are sites of exogenous input I1, · · · In then G = 0 in equation (22) and I is

the vector of exogenous currents. In this case, expressions (10) for IP and ID are obtained

immediately as the first and last entries in the solution Î of equation A Î = LU Î = I.

4.4 Distributed transmembrane current

Distributed transmembrane current describes capacitative current and intrinsic voltage-dependent

current, both of which are treated using equations (7) with appropriate expressions for J(λ, t).

4.4.1 Capacitative transmembrane current

The component of capacitative current in (9) is estimated by approximating the true membrane

potential along the segment by expression (4) based on zero transmembrane current to obtain

J cap(λ, t) = 2πcM(λ)r(λ)
dV (λ, t)

dt
= 2πcM(λ)

[
(1 − λ) rP

dVP

dt
+ λ rD

dVD

dt

]
. (30)
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It now follows from expressions (7) that the contributions made by capacitative transmembrane

current to IP and to ID are

I cap

P = 2π rPh
[
rP

dVP

dt

∫ 1

0

(1 − λ)2cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

]
,

−I cap

D = 2π rDh
[
rP

dVP

dt

∫ 1

0

λ(1 − λ)cM(λ) dλ

(1 − λ) rP + λ rD

+ rD

dVD

dt

∫ 1

0

λ2cM(λ) dλ

(1 − λ) rP + λ rD

]
.

(31)

If the compartment is a uniform cylinder with constant specific membrane capacitance, the

perturbations in axial current at the proximal and distal boundaries of the segment may be

computed by evaluating the integrals in formulae (31) to get

I cap

P =
C

6

[
2
dVP

dt
+

dVD

dt

]
, −I cap

D =
C

6

[ dVP

dt
+ 2

dVD

dt

]
(32)

where C is the total membrane capacitance of the segment. For tapered segments (rP 6= rD)

with membranes of non-uniform specific capacitance, the integrals in (31) have values

I cap

P = 2πh rP

[
cPψ(rP, rD) + cDφ(rP, rD)

]dVP

dt
+ 2πh

[
cPrDφ(rP, rD) + cDrPφ(rD, rP)

]dVD

dt
,

(33)

−I cap

D = 2πh
[
cPrDφ(rP, rD) + cDrPφ(rD, rP)

]dVP

dt
+ 2πhrD

[
cPφ(rD, rP) + cDψ(rD, rP)

]dVD

dt

where cM(λ) = (1 − λ)cP + λ cD and the auxiliary functions φ(x, y) and ψ(x, y) are defined by

φ(x, y) =
x

6(x − y)3

[
x2 − 5xy − 2y2 +

6xy2

x − y
log

x

y

]
,

ψ(x, y) =
x

6(x − y)3

[
2x2 − 7xy + 11y2 −

6y3

x − y
log

x

y

]
.

(34)

The evaluation of the integrals in expression (31) is facilitated by defining the auxiliary integrals

K1 =

∫ 1

0

(1 − λ)2ĉM(λ) dλ

r̂(λ)
, K2 =

∫ 1

0

λ(1 − λ)ĉM(λ) dλ

r̂(λ)
, K3 =

∫ 1

0

λ2ĉM(λ) dλ

r̂(λ)

and observing that K1, K2 and K3 can be determined easily from the identities

K1+2K2+K3 =

∫ 1

0

ĉM(λ) dλ

r̂(λ)
, rPK1+rDK2 =

∫ 1

0
(1−λ)ĉM(λ) dλ , rPK2+rDK3 =

∫ 1

0
λĉM(λ) dλ .

In particular, results for a uniform cylindrical segment (rP = rD) are obtained from formulae

(33) by replacing φ(x, y) and ψ(x, y) with their respective limiting values of 1/12 and 1/4 where

each limit is taken as x → y.

4.4.2 Intrinsic voltage-dependent transmembrane current

The construction of I cap

P and I cap

D for a membrane with non-constant specific capacitance provides

the framework for treating intrinsic voltage-dependent transmembrane current. For an ionic

species α, this current is usually described by the constitutive formula J = gα(θ)(V − Eα)

where V is the membrane potential, Eα is the reversal potential for species α and gα(θ) is
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a membrane conductance which depends on a set of auxiliary variables θ, for example, the

probabilities m, n and h appearing in the Hodgkin-Huxley (1952) model.

In the case of a passive membrane, the conductance gα(θ) takes a constant (but different)

value for each species. The total transmembrane current density is obtained by summing the

transmembrane current densities of each ionic species to get

J =
∑

α

gα(V − Eα) = gM(V − E) , gM =
∑

α

gα , E =
∑

α

gα

gM

Eα . (35)

Thus the constitutive equation for the transmembrane current density of a passive membrane

is J = gM(V −E) where gM (mS/cm2) is the total membrane conductance and E plays the role

of a reversal potential. When the segment is a uniform cylinder with a membrane of constant

conductance, the contributions to IP and ID mimic formulae (32) for capacitative current and

are respectively

I IVDC

P =
G

6

[
2(VP − E) + (VD − E)

]
, −I IVDC

D =
G

6

[
(VP − E) + 2(VD − E)

]
(36)

where G is the total membrane conductance of the segment. Similarly, for tapered segments

with non-constant membrane conductance, the contributions to the perturbations in the axial

current at the proximal and distal boundaries of the segment are identical to expressions (33)

with cP replaced by gP and cD replaced by gD. These contributions are

I IVDC
P = 2πh rP

[
gPψ(rP, rD) + gDφ(rP, rD)

]
(VP − E)

+ 2πh
[
gPrDφ(rP, rD) + gDrPφ(rD, rP)

]
(VD − E) ,

−I IVDC
D = 2πh

[
gPrDφ(rP, rD) + gDrPφ(rD, rP)

]
(VP − E)

+ 2πh rD

[
gPφ(rD, rP) + gDψ(rD, rP)

]
(VD − E)

(37)

where the auxiliary functions φ(x, y) and ψ(x, y) are defined in (34). At this stage of the

development of the new compartmental model, all the expressions for the perturbations to the

axial corresponding to each type of transmembrane current have been developed. It now remains

to use these expressions to construct the model differential equations.

5 Construction of the model differential equations

Section 4 showed how the various components of point and distributed input can be partitioned

between the proximal and distal boundaries of a segment. Once the total axial current IPD + IP

at the proximal boundary of a segment and IPD + ID at the distal boundary of a segment are

determined, the family of ordinary differential equations modelling the branched dendrite is

constructed by enforcing conservation of current at all segment boundaries.

Each dendritic terminal at which the potential is unknown contributes one differential equation

with form determined by the properties of the terminal. For example, if the terminal is sealed,
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the differential equation expresses the condition IPD + ID = 0. At a dendritic branch point, the

single differential equation is formed by equating the sum of the proximal current in the child

segments to the distal current in the parent segment. A point soma behaves like a branch point

with the current crossing the somal membrane playing the role of the distal current in the parent

segment. Finally, at all other segment boundaries, the differential equation is constructed by

equating the distal current of one segment to the proximal current of its neighbour.

Suppose that there are m nodes at which the potential is unknown, then the compartmental

model of the neuron will be written for the potentials

V (t) = [V1(t), V2(t), · · · , Vm(t) ]T . (38)

where Vk(t) is the potential at the kth node. The system of differential equations satisfied by

V (t) has general form

C
dV

dt
+ GSYN(t)V + GIVDC(θ(t))V − AV + I(t) = 0 (39)

where C, GSYN(t), GIVDC(θ(t)) and A are m×m matrices such that their (j, k)th entry is non-zero

whenever the jth and kth nodes lie at opposite ends of a segment, i.e., they are neighbouring

nodes. In equation (39), A is a constant matrix of axial conductances and C is a constant

matrix of capacitances. The function GSYN(t) is a matrix of time-dependent conductances

associated with synaptic input to the dendrite, the function GIVDC(θ(t)) is a matrix of time-

dependent conductances associated with intrinsic voltage-dependent transmembrane current to

the dendrite, and I(t) is a column vector of voltage-independent currents. Equation (39) is

integrated over the interval [t, t + h] to get

C[ V (t + h) − V (t)] +

∫ t+h

t
GSYN(t)V (t) dt +

∫ t+h

t
GIVDC(θ(t))V (t) dt

− A

∫ t+h

t
V (t) dt +

∫ t+h

t
I(t) dt = 0 .

(40)

The trapezoidal rule is used to estimate each integral in equation (40) with the exception of the

integral of intrinsic voltage-dependent current which is estimated by the midpoint rule. The

result of this calculation is

C[V (t + h) − V (t)] +
h

2

[
GSYN(t + h)V (t + h) + GSYN(t)V (t)

]

+ hGIVDC(θ(t + h/2))V (t + h/2) −
h

2

[
AV (t + h) + AV (t)

]

+
h

2

[
I(t + h) + I(t)

]
+ O(h3) = 0 .

(41)

By noting that 2V (t+h/2) = V (t+h)+V (t)+O(h2), equation (41) may be rearranged to give

[
2C − hA + hGSYN(t + h) + hGIVDC(θ(t + h/2))

]
V (t + h) =

[
2C + hA − hGSYN(t) − hDGIVDC(θ(t + h/2))

]
V (t) − h

[
I(t + h) + I(t)

]
+ O(h3).

(42)
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The computation of GIVDC(θ(t + h/2)) depends on how intrinsic voltage-dependent current is

specified. For example, for a membrane following Hodgkin-Huxley kinetics, GIVDC(θ(t + h/2))

is specified in terms of the solutions of a set of auxiliary equations. In this case, it is well known

that GIVDC(θ(t + h/2)) can be computed to adequate accuracy from V (t) and the differential

equations satisfied by the auxiliary variables (e.g., see Lindsay et al., 2001). The coefficient

matrices in equation (42) are therefore determined by V (t) and known prior to the determination

of the potential V (t + h).

5.1 Some additional comments

All compartmental models of a dendrite begin with a subdivision of its sections into contiguous

segments. The segments, in turn, define the compartments of the mathematical model. Both

the new and traditional compartmental models are based on the same morphological segments.

In a traditional compartmental model, the distribution of membrane potential throughout a

dendrite is described by the membrane potentials at the centres of dendritic segments. By

contrast, in the new compartmental model the membrane potential throughout a dendrite is

described by the potential at segment endpoints. The number of nodes at which potentials

are to be determined, and consequently the numerical complexity of the problem, are identical

in both types of compartmental model. Furthermore, both models involve nearest neighbour

interactions, and so the structure of the differential equations describing either model is identical.

Consequently benefits such as the existence of a sparse matrix factorisation of the matrix on

the left hand side of equation (42) are enjoyed by both types of model.

Finally, it should be noted that the development of the new compartmental model highlights

structural differences between the treatment of point input in this model and their treatment in

a numerical procedure used to solve the partial differential equations of the continuum model.

In the compartmental model, conservation of current is applied at each synapse to arrive at

an equation connecting potentials at neighbouring nodes. In a numerical procedure (e.g., finite

elements or finite differences), the potential at synapses is estimated on the basis of the assumed

representation of the potential between nodes. Consequently, numerical procedures often con-

serve current in an averaged sense, but not necessarily point-wise at a synapse. It is unclear to

what extent such a treatment of synaptic input influences the accuracy of numerical schemes.

6 The model neuron

The comparison of the accuracy of the traditional and new compartmental models is based

on the construction of a branched neuron for which the continuum model has a closed form

expression for the membrane potential in response to exogenous input. This solution then stands

as a reference against which the performance of the traditional and new compartmental models

can be assessed. The most effective way to construct a branched model neuron with a closed
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form solution for the membrane potential is to choose the radii and lengths of its sections such

that the Rall conditions for an equivalent cylinder are satisfied (Rall, 1964). These conditions

require that the sum of the three-halves power of the diameters of the child limbs is equal to the

three-halves power of the diameter of the parent limb at any branch point, and that the total

electrotonic length from a branch point to dendritic tip is independent of path. In particular,

the electrotonic distance from soma-to-tip is independent of path. The model neuron used

in our simulation exercises, illustrated in Figure 4, satisfies these conditions. When the Rall

conditions are satisfied, the effect at the soma of any configuration of input on the branched

model of the neuron is identical to the effect at the soma of the unbranched equivalent cylinder

with biophysical properties and configuration of input determined uniquely from those of the

original branched neuron (Lindsay et al., 2003).

�

(a)

(c)

(d)

(g)

(g)

(g)

(h)

(h)

(b)

(e)

(f)

(i)

(i)

(j)

(j)

(j)

Section Length µm Diameter µm

(a) 166.809245 7.089751

(b) 379.828386 9.189790

(c) 383.337494 4.160168

(d) 410.137845 4.762203

(e) 631.448520 6.345604

(f) 571.445800 5.200210

(g) 531.582750 2.000000

(h) 651.053246 3.000000

(i) 501.181023 4.000000

(j) 396.218388 2.500000

Figure 4: A branched neuron satisfying the Rall conditions. The diameters and

lengths of the dendritic sections are given in the right hand panel of the figure. At

each branch point, the ratio of the length of a section to the square root of its radius

is fixed for all children of the branch point.

To guarantee that any apparent errors between the closed form solution and the numerical

solution from either compartmental model are not due to the lack of precision with which the

branched dendrite is represented as an equivalent cylinder, a high degree of accuracy is used in

the specification of dendritic radii and section lengths in the model neuron. The model neuron

illustrated in Figure 4 is assigned a specific membrane conductance of 0.091 mS/cm2 (gM) and

specific membrane capacitance of 1.0 µF/cm2 (cM), and axoplasm of conductance 14.286 mS/cm

(gA). With these biophysical properties, the equivalent cylinder has length one electrotonic
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unit. The soma of the test dendrite is assumed to have membrane area AS, specific conductance

gS = gM and specific capacitance cS = cM.

6.1 Analytical solution

It may be shown that V (t), the deviation of the somal transmembrane potential from its resting

value as a result of a distribution I(x, t) of current on a uniform cylindrical dendrite of radius

a and length l attached to a soma is

V (t) = e−t/τ
[
φ0(t) +

∑

β

φβ(t)e−β2t/L2τ cos β
]
, L = l

√
2gM

agA

(43)

where τ is the time constant of the somal and dendritic membranes and gM and gA have their

usual meanings. The summation is taken over all the solutions β of the transcendental equation

tan β + γβ = 0 where γ (constant) is the ratio of the total membrane area of the soma to

the total membrane area of the dendrite. The functions φ0(t) and φβ(t) are solutions of the

differential equations

dφ0

dt
= −

et/τ

CD + CS

[
IS(t) +

∫ l

0
I(x, t) dx

]
,

dφβ

dt
= −

2e(1+β2/L2)t/τ

CD + CS cos2 β

[ ∫ 1

0
I(x, t) cos β(1 − x/l) dx + cos β IS(t)

] (44)

with initial conditions φ0(0) = φβ(0) = 0, that is, the neuron is initialised at its resting potential.

The parameters CS and CD denote respectively the total membrane capacitances of the soma

and dendrite, and IS(t) is the current supplied to the soma.

In the special case in which point currents I1(t), · · · , In(t) act at distances x1, · · ·xn from the

soma of the uniform cylinder, the corresponding coefficient functions φ0 and φβ satisfy

dφ0

dt
= −

et/τ

CD + CS

[
IS(t) +

n∑

k=1

Ik(t)
]
,

dφβ

dt
= −

2e(1+β2/L2)t/τ

CD + CS cos2 β

[ n∑

k=1

Ik(t) cos β(1 − xk/l) + cos β IS(t)
]
.

(45)

7 Simulation exercises

Two different simulation exercises are used to compare the performance of the new compartmen-

tal model with that of a traditional compartmental model. The first simulation exercise assesses

the performance of each type of compartmental model with respect to an analytical solution

of the continuum model. In these simulations the NEURON simulator (Hines and Carnevale,

1997) is used to characterise the behaviour of a traditional compartmental model. The second

simulation exercise compares the behaviour of a traditional compartmental model and the new

compartmental model with respect to the spike train activity generated in each model by large
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scale synaptic activity. In these simulations, a traditional compartmental model developed by

the authors is used. The behaviour of this model in the first simulation exercise is indistinguish-

able from that of the NEURON simulator. Finally, all solutions of the compartmental models

are advanced in one microsecond time steps to ensure that errors in temporal integration make

no significant contribution to the error in the estimated membrane potential.

7.1 First simulation exercise

The performance of the traditional compartmental model is first compared against that of the

new compartmental model by assessing the accuracy with which both models determine the

time course of the somal potential of the model neuron (Figure 4) when subjected to large

scale exogenous point input. The comparison relies on the fact that the model neuron has the

property that the effect at its soma of an exogenous input at a given electrotonic distance from

its soma is identical to the effect at the soma of that input acting on a uniform dendritic cylinder

at the same electrotonic distance from the soma.

Each simulation distributes 75 point inputs at random over the dendritic tree of the model

neuron, where each input has strength 2× 10−5 µA. These inputs are then mapped to positions

on the Rall equivalent cylinder at the same electrotonic distance from the soma (assumed to be

a sphere of diameter 40µm). The time course of the potential at the soma of the equivalent

cylinder due to the combined effect of these inputs is determined analytically and taken to be

the reference potential with respect to which error in both compartmental models is assessed.

The potential at the soma in response to this stimulus regimen is obtained for the traditional

and new compartmental models. The difference between a computed potential and its exact

value is determined at one millisecond intervals in the first 10 milliseconds of the simulation,

and each difference is divided by the exact potential at that time to get a relative measure of

error at these times. The entire simulation procedure is now repeated 2000 times for each of 13

different levels of spatial discretisation (number of compartments).

7.1.1 Results

The results for the first simulation exercise of the traditional and new compartmental models are

set out in Table 1. This table shows the common logarithms of the mean value of the modulus of

the relative error and the standard deviation of that error estimated at ten milliseconds after the

initiation of the stimulus and based on 2000 simulations for each level of spatial discretisation

(number of compartments). Similar results, not shown, hold at all time points at which the

errors were estimated.
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Compartments
(log10(Compartments))

NEURON New Model
log10(Mean)

NEURON New Model
log10(Standard Dev.)

17 (1.2305) −2.41151 −2.71945 −2.62290 −3.19338

21 (1.3222) −2.47233 −2.77674 −2.69851 −3.24583

34 (1.5314) −2.94299 −3.41196 −3.06731 −3.88820

41 (1.6127) −3.04729 −3.62138 −3.17081 −4.14997

54 (1.7323) −3.21258 −3.89150 −3.34889 −4.41251

61 (1.7853) −3.24692 −3.91268 −3.37653 −4.45051

75 (1.8750) −3.35180 −4.12056 −3.46881 −4.65463

82 (1.9138) −3.39846 −4.23567 −3.51591 −4.76498

93 (1.9684) −3.45602 −4.30636 −3.57633 −4.82045

193 (2.2855) −3.77417 −4.94731 −3.89829 −5.47886

293 (2.4668) −3.94409 −5.31876 −4.07811 −5.84771

390 (2.5910) −4.08234 −5.57349 −4.20025 −6.10791

495 (2.6946) −4.15996 −5.78252 −4.28525 −6.32790

Table 1: The results of 2000 simulations for each of 13 different compartmen-

tal models based on the new and traditional (NEURON) representations of

a compartment. The common logarithms of the mean value of the modulus

of the relative error and the standard deviation of that error are estimated

at ten milliseconds after the initiation of the stimulus.

The left hand panel of Figure 5 shows regression lines of the common logarithms of the modulus

of the mean relative error for the traditional (dashed line) and new (solid line) compartmental

models on the logarithm of the number of compartments used to represent the model neuron.

These lines are based on the data in Table 1 and have equations

log10(Mean Relative Error: NEURON) = −1.09 − 1.17 log10(Compartments) ,

log10(Mean Relative Error: New Model) = −0.17 − 2.10 log10(Compartments)
(46)

in which the regressions are achieved with respective adjusted R2 values of 97.4% and 99.5%.

In view of their very high R2 values, a number of conclusions can be drawn from these results.

For a fixed number of compartments, the error in the new model is always less than that of the

traditional model. The regression equations (47) support the argument and subsequent assertion

made in Section 3.2 that the error in a traditional compartmental model is approximately

O(1/n), whereas that in the new compartmental model is approximately O(1/n2). In practice,

this means that the accuracy achieved by a traditional compartmental model using 500/100

compartments is achieved in the new compartmental model by the use of approximately 100/40

compartments.
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Figure 5: The left panel shows the regression lines of the mean relative errors in the

new compartmental model (solid line) and that of a traditional compartmental model

(NEURON - dashed line) against number of compartments. All errors are measured ten

milliseconds after initiation of the stimulus. The right panel shows the regression lines

for the standard deviations of the mean relative errors for the new compartmental model

(solid line) and for a traditional compartmental model (NEURON - dashed line).

The standard deviation (SD) of the modulus of the relative error can be regarded as an indicator

of the reliability of a single application of the model. The right hand panel of Figure 5 shows

regression lines of the common logarithms of the standard deviation of the modulus of the

relative error for the traditional (dashed line) and new (solid line) compartmental models on

the logarithm of the number of compartments used to represent the model neuron. These lines

are based on the data in Table 1 and have equations

log10(SD of Relative Error: NEURON) = −1.32 − 1.12 log10(Compartments) ,

log10(SD of Relative Error: New Model) = −0.60 − 2.14 log10(Compartments)
(47)

in which the regressions are achieved with respective adjusted R2 values of 98.7% and 99.4%.

These lines show that the new compartmental model is more reliable than a traditional com-

partmental model. For example, a traditional compartmental model requires at least 100 com-

partments to give a standard deviation of the modulus of the relative error that is smaller than

that of the new compartmental model using 40 compartments.

7.2 Second simulation exercise

In the second simulation exercise 100 synapses are distributed at random over the dendritic

tree of the model neuron illustrated in Figure 4. Each synapse is activated independently of all

other synapses, has a maximum conductance of 3 × 10−5 mS and a time constant of 0.5 msec.
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Activation times for each synapse follow Poisson statistics with a mean rate of 30 pre-synaptic

spikes per second. By contrast with the first simulation exercise in which the somal membrane

was passive, the behaviour of the somal membrane in the second simulation exercise is active

and obeys Hodgkin-Huxley kinetics. This simulation exercise is based on 12 different levels

of spatial discretisation (number of compartments) in which each simulation of the traditional

and new compartmental models use identical synaptic firing times and identical numbers of

compartments.

7.2.1 Results

Table 6 gives the spike rate of soma-generated action potentials based on 11 seconds of activity,

the first second of which is ignored.

Compartments
(log10(Compartments))

Traditional Model
Mean Firing Rate

New Model
Mean Firing Rate

34 (1.5314) 31.5 27.6

41 (1.6127) 30.3 27.9

54 (1.7323) 30.5 27.5

61 (1.7853) 29.8 27.2

75 (1.8750) 29.2 27.0

82 (1.9138) 28.5 27.0

93 (1.9684) 28.3 26.8

193 (2.2855) 26.5 26.5

293 (2.4668) 25.9 26.2

390 (2.5910) 26.2 26.2

495 (2.6946) 26.7 26.2

992 (2.9965) 26.0 26.1

Table 2: The results of the second simulation exercise for a traditional com-

partmental model and the new compartmental model in which 10 second

records of spike train activity are obtained for both models for 12 different

levels of spatial discretisation (number of compartments).

Figure 6 illustrates the data set out in Table 2 in which the spike rates for the traditional

model (dashed line) and new model (solid line) are plotted against the common logarithm of

the number of compartments used in each simulation. As the number of compartments used in

each model is increased, the spike rates generated by both models approach a common limit.

However, the spike rate of the traditional model oscillates about this limit whereas that for the

new model approaches the limit in a monotonic fashion, and achieves the limiting value with

fewer compartments. For example, the spike rate obtained using the traditional model with
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100 compartments is achieved with only 40 compartments in the new model. The spike rate

obtained using the traditional model with 500 compartments is achieved in the new model with

only 100 compartments. These differences in the number of compartments required to achieve

the same level of accuracy in both models are identical to those observed in the first simulation

exercise.
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Figure 6: The spike rate plotted against the common logarithm of the number of

compartments for a traditional compartmental model (dashed line) and the new

compartmental model (solid line). The dotted line shows the expected spike rate.

8 Concluding remarks

This investigation has demonstrated that it is possible to achieve a significant increase in the

accuracy and precision of compartmental models once the actual placement of input is reflected

in the structure of the compartmental model. This finding is relevant to recent physiological

studies that have demonstrated the extreme accuracy of the timing of events in spike trains (e.g.,

Fellous et al., 2001). To investigate this phenomenon it is essential that the numerical solution

of the mathematical model accounting for this behaviour is sufficiently accurate to allow one to

distinguish between different biophysical models. The simulation exercises demonstrate that the

new compartmental model is better able to achieve this aim than a traditional compartmental

model using an identical number of compartments.
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