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II. GENERAL METHODS

A. Computational auditory-nerve model

The type of AN model for which the current study was designed is implemented on a
computer and can process an arbitrary stimulus and produce a time-varying discharge rate
that can be used with a nonstationary point process (e.g., Poisson) to simulate AN discharge
times. Examples of this type of model were described by Payton (1988) and Carney (1993).
A simplified version of the Carney (1993) model was used in the present study to provide
a better match to the AN model used by Siebert (1970), and thus to simplify comparisons
between the two studies.

Figure 1 shows pure-tone response properties of the computational AN model that are
important for the present study. Table I provides details of the implementation of the model.
A linear fourth-order gamma-tone filter bank was used to represent the frequency selectivity
of AN fibers [see population response in Fig. 1(a)], and was implemented similarly to Carney
(1993), except there was no variation in tuning with level. Model filter bandwidths were
based on estimates of human bandwidths from the psychophysical notched-noise method for
estimating auditory filter shapes [Glasberg and Moore (1990), see Table I|. Psychophysically
measured filters have been shown to match AN frequency tuning when both were measured
in guinea pig (Evans et al., 1992). The bandpass filter was followed by a memoryless,
asymmetric, saturating nonlinearity (implemented as an arctan with a 3:1 asymmetry), which
represents the mechano-electric transduction of the inner hair cell (IHC). The saturating
nonlinearity contributes to the limited dynamic range of AN fibers [Fig. 1(b)]. [Note that the
dynamic range is also affected by the IHC-AN synapse, see below and Patuzzi and Robertson
(1988).] All AN model fibers had a rate threshold of roughly 0 dB SPL, a spontaneous rate
of 50 spikes/s, and a maximum sustained rate of roughly 200 spikes/s. The model dynamic
range for sustained rate was roughly 20-30 dB, while the dynamic range for onset rate was
much larger. The synchrony-level curves showed a threshold that was roughly 20 dB below
rate threshold, a maximum at a level that was just above rate threshold, and a slight decrease
in synchrony as level was increased further [comparable to Johnson (1980) and Joris et al.
(1994)].

An important property for the present study is the rolloff in phase-locking as frequency
increases above 2-3 kHz [Fig. 1(c); Johnson, 1980; Joris et al., 1994]. Weiss and Rose (1988)
compared synchrony versus frequency in five species on a log-log scale and reported that the
data from all species were well described by a lowpass filter with roughly 100 dB/decade
rolloff (the only difference across species was the 3-dB cutoff frequency, e.g., f. = 2.5 kHz
for cat, and f. = 1.1 kHz for guinea pig). To achieve the proper rolloff in synchrony (for all
species) and cutoff frequency (for cat), seven first-order lowpass filters were used, each with
a first-order cutoff frequency of 4800 Hz. The resulting filter had a 3-dB cutoff frequency
near 2500 Hz and ~ 100 dB/decade rolloff in the frequency range 4-6 kHz [Fig. 1(c)]. The
model synchrony coefficients above 5 kHz are a simple extrapolation of the physiological
data, which appears to be reasonable given the consistent lowpass shape and slope across
many species reported by Weiss and Rose (1988).

Neural adaptation was introduced through a simple three-stage diffusion model based
on data from Westerman and Smith (1988) for the IHC-AN synapse. The continuous-time
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version of this adaptation model used by Carney (1993) was simplified by using fixed values
for the immediate and local volumes and the local and global permeabilities, consistent with
a similar implementation used by Lin and Goldstein (1995), and with Fig. 3 of Westerman
and Smith (1988). The immediate permeability was a function of the input amplitude, where
the relation was essentially linear above the resting permeability, and exponentially decayed
to zero for negative inputs (see Table I). The model’s time constants for rapid adaptation
(1.3 ms at high levels) and short-term adaptation (63 ms at high levels) are consistent with
those reported for AN fibers (e.g., Westerman and Smith, 1988). The output of the AN
model [Fig. 1(d)| represents the instantaneous discharge rate (¢, f, L) of an individual high-
spontaneous-rate, low-threshold AN fiber.

The computational AN model contains several assumptions, and does not include
several known AN response properties. It is assumed that the basic filter shape is the same
for low and high CF’s, with the only difference being filter bandwidth. The significance
of this assumption, which ignores the tails of AN tuning curves observed for high-CF AN
fibers (Kiang and Moxon, 1974), is minimized in the present study for which predictions are
limited to low- and mid-level stimuli. Level-dependent variation in tuning (e.g., Ruggero et
al., 1997) is omitted from this model for simplicity. The potential effects of the variation in
behavioral threshold as a function of frequency due to filtering by the external and middle ear
are ignored. The model does not include the distribution of spontaneous rate and threshold
across AN fibers (Liberman, 1978), or the increases in AN fiber innervation density from
apex to base (Keithley and Schriber, 1987; Liberman et al., 1990). The AN model does not
include the olivocochlear efferent system or the middle-ear-muscle reflex system. The use
of a nonstationary Poisson process to model the randomness of AN discharges ignores the
absolute and relative refractory periods that are observed in AN interval histograms (Kiang
et al., 1965), and the related observation of lower variance in discharge counts than that
predicted by a Poisson model (Teich and Khanna, 1985; Young and Barta, 1986; Delgutte,
1987; 1996).
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TABLE 1. Equations and parameters needed to implement the computational AN model.

Symbol

Description (units) Equations/values

Human cochlear map*

f(z)

distance from apex (mm)
frequency corresponding to a position x (Hz) = 165.4(10°-06 — (.88)

Gamma-tone filters’

CF
ERB

T

gt f[k]

characteristic frequency (kHz)

equivalent rectangular bandwidth (Hz) =24.7(4.37CF + 1)
Time constant of gamma-tone filter (s) = [27(1.019)ERB|™*
output of gamma-tone filter

Inner-hair-cell

ihclk]

K

B
ihCL [k]

output of saturating nonlinearity

. arctan(K- k —arctan
ihclk] = aretanlg ) sectan(f)

controls sensitivity 1225
sets 3:1 asymmetric bias -1
lowpass-filtered inner-hair-cell output (see text)

Neural adaptation model®

Ts

To

Vi

VL

Pe

Py,
PI rest
PI, mazx
Ca

Prlk|

Ci[K]

CL[K]

r[k]

sampling period (s) (see text)

spontaneous discharge rate (spikes/s) 50
immediate “volume” 0.0005
local “volume” 0.005
global permeability (“volume” /s) 0.03
local permeability (“volume” /s) 0.06
resting immediate permeability (“volume” /s) 0.012

maximum immediate permeability (“volume”/s) 0.6

global concentration (“spikes/volume”)

Ci = CL[0)(1 + P/ Pg) — Ci[0)Py/ Py = 6666.67
immediate permeability (“volume” /s)

Pylk] = 0.0173In{1 + exp(34.657 - ihey [k])}

immediate concentration (“spikes/volume”)

Cilk + 1] = Crlk] + (T5 /Vi){—Pi[k]C k] + Pp[k](CL[k] — C[k])}
C1[0] = 1o/ PLes = 4166.67

local concentration (“spikes/volume”)

Crlk + 1] = CLlk] + (T /Vi){—=P[k](CLk] — Ci[k]) + Pe(Ce — CLlk]) }
C1[0] = Cr[0)(PI,es; + Pr)/Pr = 5000.00
instantaneous discharge rate (spikes/s) = Pr[k]C1[k]

¢ Greenwood (1990).
b see Patterson et al. (1987); Glasberg and Moore (1990); Carney (1993).
¢ see Westerman and Smith (1988); Carney (1993).
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Figure 1: Basic pure-tone response properties of the computational AN model. (a) Sustained-
rate population responses for the 60 AN-model CF’s used in this study to pure tones at
several levels. Tones were 970 Hz, 62 ms (10-ms rise/fall), with levels from 0 to 80 dB SPL.
Sustained rate (calculated as the average rate over all full stimulus cycles within a temporal
window from 10 to 52 ms) is plotted versus characteristic frequency (CF) of each model
fiber. (b) Onset rate, sustained rate, and synchrony for a 970-Hz model fiber responding
to a 970-Hz, 62-ms tone as a function of level. Onset rate was calculated as the maximum
average rate over one stimulus cycle. The synchrony coefficient (units on right axis), repre-
sents the vector strength (Johnson, 1980) of the model response calculated over one cycle
beginning at 40 ms. (c¢) Maximum synchrony coefficient over level for tones at CF as a
function of frequency. Circles are data from cat (Johnson, 1980). (d) Stimulus waveform
and instantaneous discharge rates r(t, f, L) for a f = 970-Hz fiber in response to 970-Hz,
25-ms (2-ms rise/fall) tones over a range of levels (L).



