PyMUS ver 2.0

The modeling procedure including the equation derivation and parameter setting was fully
presented in our previous studies for the motoneuron (Kim et al., 2014) and the muscle (Kim
etal., 2015).

1. System equations used for the reduced motoneuron model
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where the subscripts S and D indicate the soma and dendrites, respectively, V is the
membrane potential, ELeax is the reversal potential of the leak current, G and C indicate
specific membrane conductance and capacitance, > I indicates transmembrane currents and Is
is intracellularly injected current at the soma.

1.1 Inverse equations for the five cable parameters
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where VA indicates the voltage attenuation factor calculated between the soma and dendrites
and ry is the value of Ry normalized to the surface area of the somatic compartment (see (Kim
et al., 2009;Kim and Jones, 2012) for derivation of the inverse equations (1.3)-(1.7)). In the
current version of PyMUS (PyMUS v2.0), the surface area for the somatic compartment, p
and o were set to 0.3157 m?, 0.5 and 2nx250 Hz, respectively (see Figure 2 in (Kim et al.,
2014) for the parameter setting).

1.2 Equations for the active currents

In the current version of PyMUS (PyMUS v2.0), the soma and dendrite have the same types
of active membrane properties, except for the additional inclusion of low voltage activated L-
type calcium current in the dendrite. All voltage gated ion channels were modeled based on
the HH type formulation as follows: lion=Gion'Mion®*Nion™ (V-Eion), Where Gion is the peak
conductance of the specific ion current, mion and hion are the gating variables for activation
and inactivation, a and b are the order of activation and inactivation, and Ejon is the reversal
potential for the ion of interest. The active mechanisms included in both the soma and the
dendrite were indicated by the subscript X unless otherwise stated with the subscript S or D in
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the following equations.

Fast Na* current
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N-Type Ca?* current
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Ca?* concentration dynamics
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where R=8.31441 VC/mol 'K, T=309.15 K, Zca=2, F=96485.309 C/mol with [Ca?*]o=2 mM.

Calcium dependent K+ current
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Hyperpolarization-activated mixed cation current
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Synaptic current
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Dynamical variation in excitatory (Gesyn,x) and inhibitory (Gisyn x) Synaptic conductance with
noise was formulated using the Ornstein-Uhlenbeck process, where Gesyno,x and Gisynox are
the mean of Gesynx and Gisyn x, 7 IS @ time constant, ¢ is the standard deviation from the mean
conductance and y is a random Gaussian noise process with a mean of 0 and a standard
deviation of 1 (Destexhe et al., 2001).

X1

Low voltage activation L-type Ca®* current
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The equations for Inaf, lkdr, lcan, INap, IcaL and Eca were adopted from (Mcintyre and Grill,
2002), d[Ca?*]i/dt and lk(ca) were from (Booth et al., 1997), and I was from (Powers et al.,
2012).

2. System equations used for the muscle-tendon model
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Module 1: The transformation of action potentials to calcium dynamics in the sarcoplasm
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where [Casr], [CasrCS] and CSp indicate the concentration of free calcium ions, Ca?* bound
to calsequestrin and total calsequestrin in the sarcoplasmic reticulum (SR), respectively, K1
and K2 are the forward and backward constants for reaction kinetics between the Casr and
CasrCS and the release (R) of Ca?* from the SR and the uptake (U) of Ca?* into the SR were
mathematically modeled as
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where [Casp], [CaseB], [CaspT], Bo and To indicate the concentration of free calcium ions,
Ca?" bound to free calcium-buffering proteins (B), Ca?* bound to troponin (T), total free
calcium-buffering proteins and total troponin in the sarcoplasm (SP), respectively and K3-K6
are the rate constants for chemical reactions between the Casp, B, T, CaspB and CaspT in
which K5 and K6 were modulated as a function of muscle length (X) and activation level

( A) under steady Ca?* stimulation as follows,
Xn)=@ - X, +¢,, forX <optimallength
K5 = K5 - p(X.), P(Xn)= ¢ X + 0, ptimallength -
(X)) =03 X, +¢,, for X, >optimal length

T 145-A

In the current version of PyMUS (PyMUS v2.0), CSo, Bo and To were set to 30 (mM), 0.43
(mM) and 70 (uM), respectively (see the Methods in (Kim et al., 2015) for the parameter
setting).

Module 2: The transformation of the sarcoplasmic calcium dynamics to muscle activation
dynamics

A

(1+ﬁ§0(xm))(1+7vm)
where Vn, is the time derivative of Xm and the A(t) and its exponent (a(t)) were

mathematically modeled applying the Morris-Lecar formulation that has been used to
mathematically represent the dynamics of gating variables underlying membrane excitability

A(t) = (2.6)
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(Morris and Lecar, 1981),
dA_A -A [CagTVT, -C1Y
dt  r; c2 ’

o for isometric and isokinetic contraction
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In the current version of PyMUS (PyMUS v2.0), a and a1— a3 were set to 2, 4.77, 400 (ms)
and 160 (ms), respectively. The g and y were set to 0.47 and 0.001 (s/mm) for lengths shorter
than the optimal length during muscle lengthening under dynamic contraction condition
otherwise both were set to O (see Table 1 in (Kim et al., 2015) for the parameter setting).

Module 3: The transformation of muscle activation to muscle force

F=PF - -Kg- - (AX, —AX) 2.7)
where Po is the peak force at the optimal length under full excitation in the isometric
condition, Kse is the stiffness of the serial element normalized by Po and the length (Xcg) of
contractile element was calculated using the modified Hill-Mashma equations along with the
length-tension relationship (g(Xm)),

dXCE __bo'(PO’g(Xm)'A(t)_F) . .
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In the current version of PyMUS (PyMUS v2.0), ao and co determined from Po, length-tension
and velocity-tension relationship for entire muscle were scaled by multiplying the ratio of new
to default Po for simulations of muscle units that may show various levels of Po.



PyMUS ver 2.0

References

Booth, V., Rinzel, J., and Kiehn, O. (1997). Compartmental model of vertebrate motoneurons
for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J
Neurophysiol 78, 3371-3385.

Destexhe, A., Rudolph, M., Fellous, J.M., and Sejnowski, T.J. (2001). Fluctuating synaptic
conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107,
13-24.

Kim, H., and Jones, K.E. (2012). The retrograde frequency response of passive dendritic trees
constrains the nonlinear firing behaviour of a reduced neuron model. PLoS One 7,
e43654.

Kim, H., Jones, K.E., and Heckman, C.J. (2014). Asymmetry in signal propagation between
the soma and dendrites plays a key role in determining dendritic excitability in
motoneurons. PLoS One 9, 95454,

Kim, H., Major, L.A., and Jones, K.E. (2009). Derivation of cable parameters for a reduced
model that retains asymmetric voltage attenuation of reconstructed spinal motor
neuron dendrites. J Comput Neurosci 27, 321-336.

Kim, H., Sandercock, T.G., and Heckman, C.J. (2015). An action potential-driven model of
soleus muscle activation dynamics for locomotor-like movements. J Neural Eng 12,
046025.

Mcintyre, C.C., and Grill, W.M. (2002). Extracellular stimulation of central neurons:
influence of stimulus waveform and frequency on neuronal output. J Neurophysiol 88,
1592-1604.

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber.
Biophys J 35, 193-213.

Powers, R.K., Elbasiouny, S.M., Rymer, W.Z., and Heckman, C.J. (2012). Contribution of
intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation
study. J Neurophysiol 107, 808-823.



	1. System equations used for the reduced motoneuron model
	1.1 Inverse equations for the five cable parameters
	1.2 Equations for the active currents
	Fast Na+ current
	2. System equations used for the muscle-tendon model
	Module 1: The transformation of action potentials to calcium dynamics in the sarcoplasm
	Module 2: The transformation of the sarcoplasmic calcium dynamics to muscle activation dynamics
	Module 3: The transformation of muscle activation to muscle force

