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The modeling procedure including the equation derivation and parameter setting was fully 
presented in our previous studies for the motoneuron (Kim et al., 2014) and the muscle (Kim 
et al., 2015). 
 
1. System equations used for the reduced motoneuron model 
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where the subscripts S and D indicate the soma and dendrites, respectively, V is the 
membrane potential, ELeak is the reversal potential of the leak current, G and C indicate 
specific membrane conductance and capacitance, ∑I indicates transmembrane currents and IS 
is intracellularly injected current at the soma.  
 
1.1 Inverse equations for the five cable parameters  
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where VA indicates the voltage attenuation factor calculated between the soma and dendrites 
and rN is the value of RN normalized to the surface area of the somatic compartment (see (Kim 
et al., 2009;Kim and Jones, 2012) for derivation of the inverse equations (1.3)-(1.7)). In the 
current version of PyMUS (PyMUS v2.0), the surface area for the somatic compartment, p 
and ω were set to 0.3157 m2, 0.5 and 2π×250 Hz, respectively (see Figure 2 in (Kim et al., 
2014) for the parameter setting). 
 
1.2 Equations for the active currents 
In the current version of PyMUS (PyMUS v2.0), the soma and dendrite have the same types 
of active membrane properties, except for the additional inclusion of low voltage activated L-
type calcium current in the dendrite. All voltage gated ion channels were modeled based on 
the HH type formulation as follows: IIon=GIon·mion

a·hion
b·(V-EIon), where GIon is the peak 

conductance of the specific ion current, mion and hion are the gating variables for activation 
and inactivation, a and b are the order of activation and inactivation, and EIon is the reversal 
potential for the ion of interest. The active mechanisms included in both the soma and the 
dendrite were indicated by the subscript X unless otherwise stated with the subscript S or D in 
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the following equations.  
 
Fast Na+ current 
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Delayed rectifier K+ current 
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N-Type Ca2+ current 
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Ca2+ concentration dynamics 
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Equilibrium potential for Ca2+ 
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where R=8.31441 VC/mol·K, T=309.15 K, ZCa=2, F=96485.309 C/mol with [Ca2+]o=2 mM. 
 
Calcium dependent K+ current 
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Persistent Na+ current: 
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Hyperpolarization-activated mixed cation current 

)( ,,, XHXhXHXH EVmGI −⋅⋅=                                                (1.15) 

m

hh mm
dt
md

τ
−

= ∞)(  where 










 +
=∞

Xhm

Xhms

γ
γV

m

,2

,1exp

1 , Xhmm γτ ,3=  

 
Synaptic current 
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Dynamical variation in excitatory (Gesyn,X) and inhibitory (Gisyn,X) synaptic conductance with 
noise was formulated using the Ornstein-Uhlenbeck process, where Gesyn0,X and Gisyn0,X are 
the mean of Gesyn,X and Gisyn,X, τ is a time constant, σ is the standard deviation from the mean 
conductance and χ is a random Gaussian noise process with a mean of 0 and a standard 
deviation of 1 (Destexhe et al., 2001). 

 
Low voltage activation L-type Ca2+ current 
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The equations for INaf, IKdr, ICaN, INap, ICaL and ECa were adopted from (McIntyre and Grill, 
2002), d[Ca2+]i/dt and IK(Ca) were from (Booth et al., 1997), and IH was from (Powers et al., 
2012). 
 
2. System equations used for the muscle-tendon model 
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Module 1: The transformation of action potentials to calcium dynamics in the sarcoplasm 
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where [CaSR], [CaSRCS] and CS0 indicate the concentration of free calcium ions, Ca2+ bound 
to calsequestrin and total calsequestrin in the sarcoplasmic reticulum (SR), respectively, K1 
and K2 are the forward and backward constants for reaction kinetics between the CaSR and 
CaSRCS and the release (R) of Ca2+ from the SR and the uptake (U) of Ca2+ into the SR were 
mathematically modeled as 
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where [CaSP], [CaSPB], [CaSPT], B0 and T0 indicate the concentration of free calcium ions, 
Ca2+ bound to free calcium-buffering proteins (B), Ca2+ bound to troponin (T), total free 
calcium-buffering proteins and total troponin in the sarcoplasm (SP), respectively and K3-K6 
are the rate constants for chemical reactions between the CaSP, B, T, CaSPB and CaSPT in 
which K5 and K6 were modulated as a function of muscle length (Xm) and activation level 
( A~ ) under steady Ca2+ stimulation as follows, 
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In the current version of PyMUS (PyMUS v2.0), CS0, B0 and T0 were set to 30 (mM), 0.43 
(mM) and 70 (µM), respectively (see the Methods in (Kim et al., 2015) for the parameter 
setting). 
 
Module 2: The transformation of the sarcoplasmic calcium dynamics to muscle activation 
dynamics 
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where Vm is the time derivative of Xm and the ( )tA~  and its exponent (α(t)) were 
mathematically modeled applying the Morris-Lecar formulation that has been used to 
mathematically represent the dynamics of gating variables underlying membrane excitability 
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(Morris and Lecar, 1981), 
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In the current version of PyMUS (PyMUS v2.0), α and α1– α3 were set to 2, 4.77, 400 (ms) 
and 160 (ms), respectively. The β and γ were set to 0.47 and 0.001 (s/mm) for lengths shorter 
than the optimal length during muscle lengthening under dynamic contraction condition 
otherwise both were set to 0 (see Table 1 in (Kim et al., 2015) for the parameter setting). 
 
Module 3: The transformation of muscle activation to muscle force 
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where P0 is the peak force at the optimal length under full excitation in the isometric 
condition, KSE is the stiffness of the serial element normalized by P0 and the length (XCE) of 
contractile element was calculated using the modified Hill-Mashma equations along with the 
length-tension relationship (g(Xm)), 
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In the current version of PyMUS (PyMUS v2.0), a0 and c0 determined from P0, length-tension 
and velocity-tension relationship for entire muscle were scaled by multiplying the ratio of new 
to default P0 for simulations of muscle units that may show various levels of P0. 
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