To investigate the evolution of myelin, we vary the parameters in our myelin model and observe how the physiology of the axon is affected.

ALG_PARCHA-130523.hoc, loads the PARCHA algorithm that allows the user to change one of 18 parameters in our model. The 18 parameters are listed in the beginning of the source code of the .hoc file and in the following figures. If there are other parameters that are dependent on the changing parameter, those will be changed accordingly as well (more details below). A base neuron must be loaded beforehand. This algorithm is executed with the command PARCHA(parameter name, parameter value) where parameter name is the parameter to be changed and parameter value is its new value. If the new parameter value is to be written into a .dat file, then the .dat file must be open prior to the execution of PARCHA algorithm. If a .dat file is open while PARCHA is executed, parameter value will be written in the .dat file followed by a comma and a space.

Parameter name	Flow	Description
all_axondiam	1	Axon diameter. Cross sectional area
		and hence per-length resistance of sub-
		myelin space (mye.xraxial) is also af-
		fected in addition to the usual diameter
		dependent dynamics.
all_rhoa	11	Resistivity of the intercellular medium.
node_L	7	Length of nodal segments (node.L).
		Whenever this length is changed,
		node.nseg is automatically changed as
		well.
node_nsegs	8	Number of spatial compartments that
		each nodal segment is partitioned into
		(node.nseg). NEURON discretizes the
		model spatially before "solving" the
		each compartment numerically.
node_gnabar	12	Maximum sodium conductance of nodal
		segment axolemma (node.gnabar).
node_gkbar	13	Maximum potassium conduc-
		tance of nodal segment axolemma
		(node.gkbar).
node_xraxial	14	Axial resistance of the external
		medium surrounding the nodal seg-
		ments (node.xraxial).
node_xg	15	Radial conductance of the external
		medium surrounding the nodal seg-
		ments (node.xg).
node_xc	16	Radial capacitance of the external
		medium surrounding the nodal seg-
		ments (node.xc).
mye_gap	2	Thickness of the submyelin space
		(from axolemma to sheath). Affects
		cross sectional area and hence per-
		length resistance of submyelin space
		(mye.xraxial).
mye_rhoo	3	Resistivity of the extracellular medium
		in the submyelin space. Also af-
		fects per-length resistance of submyelin
		space (mye.xraxial).

mye_nl	4	Number of myelin wraps (consisting of two phospholipid bilayers each). Each phospholipid layer adds a capacitor and resistor in series radially to the sheath. Each added capacitor and re- sistor have capacitance mycm and re- sistance 1/mygm, respectively. Radial conductance (mye.xg) and capacitance (mye.xc) through the sheath are af- fected
mye_mygm	5	Per-length conductance of each phos- pholipid layer of the sheath. Ra- dial conductance through the sheath (mye.xg) is affected.
mye_mycm	6	Per-length capacitance of each phospholipid layer of the sheath. Radial capacitance through the sheath (mye.xc) is affected.
mye_L	9	Length of internodal segments (mye.L). Whenever this length is changed, mye.nseg is automatically changed as well.
mye_nsegs	10	Number of spatial compartments that each internodal segment is partitioned into (mye.nseg). NEURON discretizes the model spatially before "solving" the each compartment numerically.
mye_gnabar	17	Maximum sodium conductance of internodal segment axolemma (mye.gnabar).
mye_gkbar	18	Maximum potassium conductance of internodal segment axolemma (mye.gkbar).

